www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Reihenkonv mit quotientenkrit?
Reihenkonv mit quotientenkrit? < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihenkonv mit quotientenkrit?: Quotientenkriterium
Status: (Frage) beantwortet Status 
Datum: 14:51 Mi 16.11.2005
Autor: willymathe

Hallo an euch alle,
ich bin langsam dabei durchzusteigen wie man die Reihenkonvergenz bzw -divergenz nachweißt, nur bei einer Aufgabe komm ich nicht drauf. Vielleicht könnte mir ja einer von euch weiterhelfen:
Wie zeige ich ob die Reihe  [mm] \summe_{i=0}^{n}n^k*x^n [/mm]    (für k Element N, und x Element R mit |x| < 1)
konvergiert?

Ich habe es mit dem Quotientenkriterium probiert, komme aber dann auf kein Ergebnis, es kommt dann raus:
[mm] (n+1)^k/n^k [/mm] = ???
Ich kann hier leider nichts rauslesen, ob es ">1" oder "<1" ist.

Vielen vielen dank schonmal an alle.
Bis dann, Willy

        
Bezug
Reihenkonv mit quotientenkrit?: Kleiner Fehler von mir
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:55 Mi 16.11.2005
Autor: willymathe

Hallo ich hab leider einen kleiner Fehler in meiner Frage gemacht.
Wenn ich durchrechne kommt raus:

[mm] x*(n+1)^k/n^k [/mm]

statt wie ich zuerst geschrieben habe [mm] (n+1)^k/n^k. [/mm] Dann wäre es klar, dass es ">1" ist.
Tut mir sehr Leid für den Schreibfehler

Bezug
        
Bezug
Reihenkonv mit quotientenkrit?: richtig
Status: (Antwort) fertig Status 
Datum: 21:01 Mi 16.11.2005
Autor: mathmetzsch

Hallo,

also das Quotientenkriterium anzuwenden ist hier richtig.

Gemäß dem Quotientenkriterium gilt

[mm] \bruch{a_{n+1}}{a_{n}}=(\bruch{n+1}{n})^{k}*x\to [/mm] x

da ja [mm] (\bruch{n+1}{n})=1+\bruch{1}{n}\to [/mm] 1 strebt und dauernd positiv ist. Die Reihe ist daher - und dies ohne Rücksicht auf den Wert von k - konvergent, falls x<1, divergent falls x>1. Im Fall x=1 haben wir die harmonische Reihe vor uns und die ist bekanntermaßen divergent.

VG mathmetzsch

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de