www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Reihenkonvergenz
Reihenkonvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihenkonvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:27 Fr 05.08.2011
Autor: kushkush

Aufgabe
Es sei [mm] $\sum_{n\in \IN} a_{n}$ [/mm] eine Reihe und [mm] $N\in \iN$. [/mm] Man zeige: [mm] $\sum_{n \in \IN} a_{n}$ [/mm] konvergiert genau dann, wenn [mm] $\sum_{n\ge N} a_{n}$ [/mm] konvergiert, und im Falle der Konvergenz gilt :

[mm] $\sum_{n=0}^{\infty} a_{n} [/mm] = [mm] \sum_{n=0}^{N} a_{n} [/mm] + [mm] \sum_{n=N+1}^{\infty} a_{n}$ [/mm]

Hallo,


konvergiert [mm] $\sum _{n\ge N} a_{n}$ [/mm] dann gilt [mm] $\forall \epsilon [/mm] >0 \ [mm] m\ge [/mm] n [mm] \ge [/mm] N\ \ [mm] \exists [/mm] N [mm] \in \IN [/mm] : [mm] |\sum_{n\ge N} a_{n}|<\epsilon [/mm] $ Daraus folgt, dass sich das Konvergenzverhalten nicht ändert, wenn nur endlich viele Summanden verändert werden, weshalb auch [mm] $\sum_{n \in \IN} a_{n}$ [/mm] wenn [mm] $\sum_{n \ge N} a_{n}$ [/mm] konvergiert.

Die Konvergenz ist gleichbedeutend mit der Existenz einer Cauchyfolge und somit auch von einer Folge von Partialsummen für welche gilt :


[mm] $S_{n} [/mm] := [mm] \sum_{k=m}^{n} [/mm] $

$ [mm] S_{n}-S_{N+1}=\sum_{k=N+1}^{n}a_{n}$ [/mm]

und für [mm] $n\rightarrow \infty$ [/mm] folgt die Behauptung.



ist das so richtig?


Ich bin für jegliche Hilfestellung dankbar.



Gruss
kushkush

        
Bezug
Reihenkonvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 11:07 Fr 05.08.2011
Autor: kamaleonti

Moin kushkush,
> Es sei [mm]\sum_{n\in \IN} a_{n}[/mm] eine Reihe und [mm]N\in \iN[/mm]. Man
> zeige: [mm]\sum_{n \in \IN} a_{n}[/mm] konvergiert genau dann, wenn
> [mm]\sum_{n\ge N} a_{n}[/mm] konvergiert, und im Falle der
> Konvergenz gilt :
>
> [mm]\sum_{n=0}^{\infty} a_{n} = \sum_{n=0}^{N} a_{n} + \sum_{n=N+1}^{\infty} a_{n}[/mm]
>  
> Hallo,
>  
>
> konvergiert [mm]\sum _{n\ge N} a_{n}[/mm] dann gilt [mm]\forall \epsilon >0 \ m\ge n \ge N\ \ \exists N \in \IN : |\sum_{n\ge N} a_{n}|<\epsilon[/mm]
> Daraus folgt, dass sich das Konvergenzverhalten nicht ändert, wenn nur endlich viele Summanden verändert
> werden, weshalb auch [mm]\sum_{n \in \IN} a_{n}[/mm] wenn [mm]\sum_{n \ge N} a_{n}[/mm] konvergiert.

Wie genau folgt das?

>
> Die Konvergenz ist gleichbedeutend mit der Existenz einer
> Cauchyfolge und somit auch von einer Folge von
> Partialsummen für welche gilt :
>
>
> [mm]S_{n} := \sum_{k=m}^{n}[/mm]

Was ist m?

>  
> [mm]S_{n}-S_{N+1}=\sum_{k=N+1}^{n}a_{n}[/mm]
>
> und für [mm]n\rightarrow \infty[/mm] folgt die Behauptung.

Es geht auch so:

      [mm] \sum_{n=0}^\infty a_n=\lim_{m\to\infty}\sum_{n=0}^{m} a_n\stackrel{m\geq N}{=}\lim_{m\to\infty}\left(\sum_{n=0}^{N} a_n+\sum_{n=N+1}^{m} a_n\right)=\sum_{n=0}^{N} a_n+\sum_{n=N+1}^{\infty} a_n [/mm]


LG

Bezug
        
Bezug
Reihenkonvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 11:25 Fr 05.08.2011
Autor: Nisse


> Man zeige: [mm]\sum_{n \in \IN} a_{n}[/mm] konvergiert genau dann, wenn
> [mm]\sum_{n\ge N} a_{n}[/mm] konvergiert, [mm]\dots[/mm]

> konvergiert [mm]\sum _{n\ge N} a_{n}[/mm] dann gilt

[mm]\vdots[/mm]

> und für [mm]n\rightarrow \infty[/mm] folgt die Behauptung.
>
> ist das so richtig?

Hier fehlt für die geforderte Äquivalenz die Rückrichtung.


Bezug
                
Bezug
Reihenkonvergenz: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:44 Fr 05.08.2011
Autor: kushkush

Hallo kamaleonti und Nisse,



> Wie genau folgt das

wenn sich zwei Reihen um endlich viele Summanden unterscheiden, dann macht man die Epsilon Umgebung so gross/klein, dass darin nur die gleichen Summanden beider Reihen liegen.

Wie man das formal beweisen kann fällt mir nicht ein!



> Es geht auch so

> Hier fehlt die geforderte Rückrichtung

OK. Danke euch beiden!!



Gruss
kushkush

Bezug
                        
Bezug
Reihenkonvergenz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 So 07.08.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de