www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Reihenkonvergenz & Menge
Reihenkonvergenz & Menge < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihenkonvergenz & Menge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:09 Do 05.07.2012
Autor: Der-Madde-Freund

Hi,

ich hätte zwei Aufgaben bei denne ich Hilfe brauche:

1) Untersuche auf absolute Konvergenz:

[mm] \summe_{k=0}^{\infty}\frac{log(z)^{2k+1}}{(2k+1)!}, z\in \IC [/mm]

Hier weiss ich nicht, wie ich das zeigen soll... welches Kriterium muss ich denn verwenden?

-----------------------------------------------


2) Skizziere in der Gaußschen Zahlenebene:
log(z) [mm] \in [/mm] i[0; [mm] \pi/2] [/mm]

Auch hier habe ich keine Ahnung, wie ich vorgehen soll, vllt. z=x+iy umschreiben?

        
Bezug
Reihenkonvergenz & Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 06:57 Fr 06.07.2012
Autor: fred97


> Hi,
>  
> ich hätte zwei Aufgaben bei denne ich Hilfe brauche:
>  
> 1) Untersuche auf absolute Konvergenz:
>  
> [mm]\summe_{k=0}^{\infty}\frac{log(z)^{2k+1}}{(2k+1)!}, z\in \IC[/mm]
>  
> Hier weiss ich nicht, wie ich das zeigen soll... welches
> Kriterium muss ich denn verwenden?

Für welche w [mm] \in \IC [/mm] konv. die Potenzreihe

[mm][mm] \summe_{k=0}^{\infty}\frac{w^{2k+1}}{(2k+1)!} [/mm]

absolut ?

FRED

>  
> -----------------------------------------------
>  
>
> 2) Skizziere in der Gaußschen Zahlenebene:
>  log(z) [mm]\in[/mm] i[0; [mm]\pi/2][/mm]
>  
> Auch hier habe ich keine Ahnung, wie ich vorgehen soll,
> vllt. z=x+iy umschreiben?


Bezug
                
Bezug
Reihenkonvergenz & Menge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:06 Fr 06.07.2012
Autor: Der-Madde-Freund


> Für welche w [mm]\in \IC[/mm] konv. die Potenzreihe
>  
> [mm][mm]\summe_{k=0}^{\infty}\frac{w^{2k+1}}{(2k+1)!}[/mm]

absolut ?


Hm, diese Reihe könnte ich ja auch als sinh(w) umschreiben, kann ich dann sagen, dass sie deshalb auch konvergent ist?

Bezug
                        
Bezug
Reihenkonvergenz & Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 22:42 Fr 06.07.2012
Autor: Marcel

Hallo,

>
> > Für welche w [mm]\in \IC[/mm] konv. die Potenzreihe
>  >  
> > [mm][mm]\summe_{k=0}^{\infty}\frac{w^{2k+1}}{(2k+1)!}[/mm]

  

> > absolut ?


> Hm, diese Reihe könnte ich ja auch als sinh(w) umschreiben, kann ich
> dann sagen, dass sie deshalb auch konvergent ist?

ja, das geht auch. Aber ich geb' Dir mal den Wink mit dem Zaunpfahl:
[mm] $$\sum_{k=0}^\infty \left|\frac{w^{2k+1}}{(2k+1)!}\right|=\sum_{k=0}^\infty \frac{|w|^{2k+1}}{(2k+1)!} \le \sum_{\ell=0}^\infty \frac{|w|^\ell}{\ell!}=e^{|w|}\,.$$ [/mm]

Und warum ist das DER Wink mit dem Zaunpfahl? Naja, wenn man diese Abschätzung sieht, hätte man doch direkt auch auf die Idee kommen können, dass man die Konvergenzuntersuchung der Reihe [mm] $\sum_{k=0}^\infty \frac{w^{2k+1}}{(2k+1)!}$ [/mm] genau so machen kann, wie man es bei der mit der Exponentialreihe macht:
Das Quotientenkriterium führt zum Ziel [mm] ($|w|^{2n+1}/((2n+1)!)*(2n-1)!/|w|^{2n-1}=... \to [/mm] 0$ bei $n [mm] \to \infty\,,$ [/mm] $w [mm] \in \IC$ [/mm] bel., aber fest)!

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de