Reihenkonvergenz und Nullfolge < Analysis < Hochschule < Mathe < Vorhilfe
|
Hallo zusammen!
Ich mache mir gerade Gedanken über eine bestimmte Frage, dazu hätte ich gerne ein paar Denkanstöße. Wie wir alle wissen, ist ein notwendiges Kriterium zur Konvergenz einer unendlichen Reihe, dass die Folge in der Summe Nullfolge ist. Nun die Frage:
Kann man bei bestimmten Reihentypen auf Konvergenz schließen, ohne die "innere Folge" zu kennen, nur weiß, dass sie Nullfolge ist? Bei der unend. Reihe über 1/n weiss man ja, dass die Reihe trotz Nullfolge konvergiert. Wie sieht das z.B. mit der [mm] \summe_{i=1}^{\infty} 2^{-n}*a_{n} [/mm] aus? Kann man eine Aussage treffen wie: Für alle Nullfolgen [mm] a_n [/mm] konviert diese Reihe?
Andreas
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 01:17 So 27.02.2005 | Autor: | Marc |
Hallo Andreas,
> Ich mache mir gerade Gedanken über eine bestimmte Frage,
> dazu hätte ich gerne ein paar Denkanstöße. Wie wir alle
> wissen, ist ein notwendiges Kriterium zur Konvergenz einer
> unendlichen Reihe, dass die Folge in der Summe Nullfolge
> ist. Nun die Frage:
> Kann man bei bestimmten Reihentypen auf Konvergenz
> schließen, ohne die "innere Folge" zu kennen, nur weiß,
> dass sie Nullfolge ist? Bei der unend. Reihe über 1/n weiss
> man ja, dass die Reihe trotz Nullfolge konvergiert. Wie
> sieht das z.B. mit der [mm]\summe_{i=1}^{\infty} 2^{-n}*a_{n}[/mm]
> aus? Kann man eine Aussage treffen wie: Für alle Nullfolgen
> [mm]a_n[/mm] konviert diese Reihe?
Ja, das kann man sagen, denn man kann ja recht einfach eine konvergente Majorante angeben.
Da [mm] $(a_n)$ [/mm] Nullfolge ist, gibt es ein [mm] $N\in\IN$ [/mm] so dass [mm] $|a_n|<1$ $\forall [/mm] n>N$.
Dann ist doch
[mm] $\summe_{n=1}^{\infty} b_n$ [/mm]
mit
[mm] $b_n:=\begin{cases} 2^{-n}*|a_n|, & \mbox{für } n\le N \\ 2^{-n}, & \mbox{für } n>N \end{cases}$
[/mm]
konvergent und es gilt [mm] $|2^{-n}*a_n|\le b_n$ $\forall n\in\IN$.
[/mm]
Viele Grüße,
Marc
|
|
|
|