www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Elektrotechnik" - Reihenresonanzfrequenz
Reihenresonanzfrequenz < Elektrotechnik < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihenresonanzfrequenz: Hilfe bei Aufgabenstellung
Status: (Frage) beantwortet Status 
Datum: 14:41 Sa 19.04.2008
Autor: aciddemon

Aufgabe
Gegeben ist die nachfolgende Schaltung. Bestimmen sie die Reihenresonanzfrequenz

http://img241.imageshack.us/my.php?image=p4192857uh5.jpg

Hallo,

momentan verzweifeln ich und meine Kollegen aus der Lerngruppe ein wenig an dieser Aufgabe.

Der Lösungsweg im Kurzdurchlauf sollte doch sein:
- Aufstellen von Z_gesamt
- Konjugiert komplex erweitern
- Auftrennen von Real und Imaginärteil
- Imaginärteil 0 setzen und nach omega umstellen

Aufstellen von Z_gesamt:

Z= jwl + [mm] \frac{1}{\frac{1}{jwc}+\frac{1}{R}} [/mm]

Konjugiert komplex erweitert:

Z= jwl + [mm] \frac {\frac{1}{R}-jwl}{\frac{1}{R}^2+(wc)^2} [/mm]

Auftrennen von Real und Imaginärteil:

Re = [mm] \frac {\frac{1}{R}}{\frac{1}{R}^2+(wc)^2} [/mm]
Img = jwl - [mm] \frac{jwc}{\frac{1}{R}^2+(wc)^2} [/mm]

Imaginärteil null setzen:

0 = jwl - [mm] \frac{jwc}{\frac{1}{R}^2+(wc)^2} [/mm]
=-jwc + jwl * [mm] (\frac{1}{R}^2+(wc)^2) [/mm]
=jwc + [mm] \frac{jwl}{R^2}+jwl*(wc)^2 [/mm]

Und irgendwie setzt hier die Hilflosigkeit ein. Evtl. kann mir ja jemand auf die Sprünge helfen.  

Gruß
Claas

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
Reihenresonanzfrequenz: Antwort
Status: (Antwort) fertig Status 
Datum: 14:28 So 20.04.2008
Autor: rainerS

Hallo Claas!

Erstmal herzlich [willkommenvh]

> Gegeben ist die nachfolgende Schaltung. Bestimmen sie die
> Reihenresonanzfrequenz
>  []http://img241.imageshack.us/my.php?image=p4192857uh5.jpg
>  
> Hallo,
>
> momentan verzweifeln ich und meine Kollegen aus der
> Lerngruppe ein wenig an dieser Aufgabe.
>
> Der Lösungsweg im Kurzdurchlauf sollte doch sein:
>  - Aufstellen von Z_gesamt
>  - Konjugiert komplex erweitern
>  - Auftrennen von Real und Imaginärteil
>  - Imaginärteil 0 setzen und nach omega umstellen
>  
> Aufstellen von Z_gesamt:
>  
> Z= jwl + [mm]\frac{1}{\frac{1}{jwc}+\frac{1}{R}}[/mm]

[notok]

[mm] Z = j\omega L + \frac{1}{j\omega C+\frac{1}{R}}[/mm]

> Konjugiert komplex erweitert:
>  
> Z= jwl + [mm]\frac {\frac{1}{R}-jwl}{\frac{1}{R}^2+(wc)^2}[/mm]

[notok]

Wieso wird aus dem [mm] $j\omega [/mm] C$ im Nenner ein [mm] $j\omega [/mm] L$ im Zähler?

[mm] \frac{1}{j\omega C+\frac{1}{R}} = \frac{\frac{1}{R}-j\omega C}{\left(\frac{1}{R}\right)^2+ \left(\omega C}\right)^2} [/mm]


>  
> Auftrennen von Real und Imaginärteil:
>  
> Re = [mm]\frac {\frac{1}{R}}{\frac{1}{R}^2+(wc)^2}[/mm]
>  Img = jwl - [mm]\frac{jwc}{\frac{1}{R}^2+(wc)^2}[/mm]

Jetzt stimmt's wieder.

>  
> Imaginärteil null setzen:
>  
> 0 = jwl - [mm]\frac{jwc}{\frac{1}{R}^2+(wc)^2}[/mm]
>  =-jwc + jwl * [mm](\frac{1}{R}^2+(wc)^2)[/mm]
>  =jwc + [mm]\frac{jwl}{R^2}+jwl*(wc)^2[/mm]

Schlampig geschrieben. Die 2. Gleichung ist zwar 0, aber nicht gleich der ersten, denn du hast mit dem Nenner multipliziert.

>  =jwc + [mm]\frac{jwl}{R^2}+jwl*(wc)^2[/mm]

Und hier ist plötzlich ein Minuszeichen verschwunden.


> Und irgendwie setzt hier die Hilflosigkeit ein. Evtl. kann
> mir ja jemand auf die Sprünge helfen.  

Die Gleichung ist doch ganz einfach zu lösen:

[mm] -j\omega C + j\omega L \frac{1}{\frac{1}{R^2}+(\omega C)^2} = 0 [/mm]

[mm] $\omega$ [/mm] kann man ausklammern, also ist [mm] $\omega=0$ [/mm] eine Lösung. Jetzt suchen wir nach weiteren Lösungen; da wir nur am Fall [mm] $\omega\not=0$ [/mm] interessiert sind, können wir [mm] durch($J\omega$ [/mm] dividieren:

[mm] -C + L \frac{1}{\frac{1}{R^2}+(\omega C)^2} = 0 \gdw \bruch{L}{C} = \frac{1}{R^2}+(\omega C)^2 [/mm]

Jetzt musst du nur noch beachten, dass diese Gleichung nicht für alle möglichen Werte von L,C,R Lösungen hat.

Viele Grüße
   Rainer



Bezug
        
Bezug
Reihenresonanzfrequenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:58 So 20.04.2008
Autor: aciddemon

Guten Abend Rainer,

Dank an Dich für deine Antwort und entschuldige meine Schlampigkeit beim Abschreiben der Rechnung. Dies war evtl. auch einer der Gründe, warum ich so durcheinander kam. C und L sollte man besser nicht verwechseln.

Ich weiß nun aber, wie die Aufgabe zu lösen ist.

Gruß
Claas

Nachtrag: Eigentlich sollte es keine Frage werden, sondern lediglich eine Mitteilung aber gut. Verwirrendes System.




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de