www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Reihenwert einer Potenzreihe
Reihenwert einer Potenzreihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihenwert einer Potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:05 Fr 05.04.2013
Autor: MarcHe

Aufgabe
(3) Unter Verwendung geeigneter (und aus dem Kurs bekannter
Potenzreihenentwicklungen) entscheide man zunächst Konvergenz/
Divergenz der beiden angegebenen Zahlenreihen:

[mm] \summe_{k=0}^{\infty} \bruch{(-1)^k}{k+1}*\bruch{1}{2^\bruch{k+1}{2}} [/mm]

Im Falle der Konvergenz bestimme man auch den Reihenwert.

Wie kann ich den Reihenwert dieser Reihe bestimmen?

Ich hab obige Summenformel schon soweit umgeschrieben:

[mm] \wurzel{\bruch{1}{2}}*\summe_{k=0}^{\infty} \bruch{(-1)^k}{k+1}*(\wurzel{\bruch{1}{2}})^k [/mm]

Und auch schon mal die ersten Glieder aufgeschrieben:

[mm]1 + (-\bruch{1}{2}*\wurzel{\bruch{1}{2}})+(\bruch{1}{3}*\bruch{1}{2})+(-\bruch{1}{4}*\wurzel{\bruch{1}{2}}^3)+...[/mm]

Daran habe ich jetzt erkannt, dass darin die Harmonische Reihe mit alternierenden Vorzeichen und die geometrische Summe drin steckt, aber ich komme jetzt irgendwie nicht weiter. Könnt ihr mir da helfen?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Reihenwert einer Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 19:13 Fr 05.04.2013
Autor: steppenhahn

Hallo,

zwei Vorschläge für dich:

1) Die Aufgabenstellung legt nahe, dass ihr schon einige Funktionen in Reihen entwickelt habt. Schau dir mal die []Reihe des Logarithmus an.

2) Ein "Weg zu Fuß" (also wenn man die Reihe nicht kennt) geht so: Die Reihe hat grob folgende Struktur:

$f(x) = [mm] \sum_{k=0}^{\infty}\frac{1}{k+1}*x^{k+1}$. [/mm]

Die Idee wäre, die Reihe als Funktion f(x) aufzufassen. Innerhalb des Konvergenzbereichs ist sie differenzierbar und man kann gliedweise ableiten:

$f'(x) = [mm] \sum_{k=0}^{\infty}x^{k}$ [/mm]

Das ist "nur" noch eine geometrische Reihe, und die kannst du ausrechnen. Du kennst also f'(x), und kannst somit f(x) bestimmen. Zuletzt setzt du wieder für x den gewünschten Wert ein.

Viele Grüße,
Stefan

Bezug
                
Bezug
Reihenwert einer Potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:47 Sa 06.04.2013
Autor: MarcHe

Vielen Dank für deine Antwort. Habe es verstanden. Habe aber noch zwei Fragen:

1.  Ich hatte die Reihe ja so schön umgeformt: $ [mm] \wurzel{\bruch{1}{2}}\cdot{}\summe_{k=0}^{\infty} \bruch{(-1)^k}{k+1}\cdot{}(\wurzel{\bruch{1}{2}})^k [/mm] $

Dank deiner Hilfe habe ich rausgefunden, dass der Grenzwert der Reihe [mm] log(\wurzel{\bruch{1}{2}}+1)[/mm] ist. Wenn ich den Grenzwert noch mit [mm] \wurzel{\bruch{1}{2}} [/mm] mal nehme stimmt er aber nicht mehr. Wo ist da mein gedanklicher Fehler?

2. Der Weg über die Ableitung ergibt ja: [mm]f'(x) = \bruch{1}{1-x}[/mm] dies intergriert erhalte ich:
$-log(1-x)+b$.
Wie bestimmte ich jetzt in diesem Falle das [mm]b[/mm]?

Vielen Dank schonmal.

Bezug
                        
Bezug
Reihenwert einer Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 18:50 Sa 06.04.2013
Autor: fred97


> Vielen Dank für deine Antwort. Habe es verstanden. Habe
> aber noch zwei Fragen:
>  
> 1.  Ich hatte die Reihe ja so schön umgeformt:
> [mm]\wurzel{\bruch{1}{2}}\cdot{}\summe_{k=0}^{\infty} \bruch{(-1)^k}{k+1}\cdot{}(\wurzel{\bruch{1}{2}})^k[/mm]
>  
> Dank deiner Hilfe habe ich rausgefunden, dass der Grenzwert
> der Reihe [mm]log(\wurzel{\bruch{1}{2}}+1)[/mm] ist. Wenn ich den
> Grenzwert noch mit [mm]\wurzel{\bruch{1}{2}}[/mm] mal nehme stimmt
> er aber nicht mehr. Wo ist da mein gedanklicher Fehler?
>  
> 2. Der Weg über die Ableitung ergibt ja: [mm]f'(x) = \bruch{1}{1-x}[/mm]
> dies intergriert erhalte ich:
> [mm]-log(1-x)+b[/mm].
> Wie bestimmte ich jetzt in diesem Falle das [mm]b[/mm]?

Es ist f(0)=0


FRED

>  
> Vielen Dank schonmal.


Bezug
                                
Bezug
Reihenwert einer Potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:02 Sa 06.04.2013
Autor: MarcHe

MEinst du damit das: [mm] b = 0[/mm]

Bezug
                                        
Bezug
Reihenwert einer Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 19:06 Sa 06.04.2013
Autor: fred97


> MEinst du damit das: [mm]b = 0[/mm]

ja

fred


Bezug
                                                
Bezug
Reihenwert einer Potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:33 Sa 06.04.2013
Autor: MarcHe

Kam jetzt auf die Lösung, Danke.

Aber ist denn meine Umformung: $ [mm] \summe_{k=0}^{\infty} \bruch{(-1)^k}{k+1}\cdot{}\bruch{1}{2^\bruch{k+1}{2}} [/mm] = [mm] \wurzel{\bruch{1}{2}}\cdot{}\summe_{k=0}^{\infty} \bruch{(-1)^k}{k+1}\cdot{}(\wurzel{\bruch{1}{2}})^k [/mm] $

Legitim?

Bezug
                                                        
Bezug
Reihenwert einer Potenzreihe: korrekt
Status: (Antwort) fertig Status 
Datum: 19:59 Sa 06.04.2013
Autor: Loddar

Hallo Marc!

> [mm]\summe_{k=0}^{\infty} \bruch{(-1)^k}{k+1}\cdot{}\bruch{1}{2^\bruch{k+1}{2}} = \wurzel{\bruch{1}{2}}\cdot{}\summe_{k=0}^{\infty} \bruch{(-1)^k}{k+1}\cdot{}(\wurzel{\bruch{1}{2}})^k[/mm]

[daumenhoch] Das kann man so machen.


Gruß
Loddar

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de