www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Steckbriefaufgaben" - Rekonstruktionsaufgaben
Rekonstruktionsaufgaben < Steckbriefaufgaben < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rekonstruktionsaufgaben: Hilfestellung für Ansatz
Status: (Frage) beantwortet Status 
Datum: 10:14 Di 03.12.2013
Autor: herpedia

Aufgabe
Aufgabe 2: ist eine Funktion 4. Grades, deren Graph symmetrisch zur y-Achse liegt, diese in -4 schneidet und in (-4|0) eine waagerechte Tangente besitzt. Bestimmen Sie die Funktionsgleichung.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo zusammen,

wir haben in der Schule nun die Kurvendiskussion als Thema und sind an Rekonstruktionsaufgaben (Kurvendiskussion "rückwärts") angelangt. Ich habe aber noch so meine Probleme beim Aufstellen der bekannten Vorschriften und des Gleichungssystems. Für die gegebene Aufgabe hätte ich jetzt folgende Vorschriften aufgestellt:

Allg. Form: [mm] ax^{4} [/mm] + [mm] bx^{3} [/mm] + [mm] cx^{2} [/mm] + dx + e (richtig?)

Dann die bekannten Fakten:
f'(-4) = 0 --> -256a + 48b - 8 + d = 0
f'(4) = 0 --> 256a + 48b + 8 + d = 0
f'(0) = 0 --> d = 0
f(0) = -4 --> e = -4

I  -256a + 48b - 8 + d = 0 (Additionsverfahren)
II 256a + 48b + 8 + d = 0
----------------------------------
I+II

96b = 0 | : 96
b = 0 in II
----------------------------------

256a + 8 = 0 |-8
256a = -8 | :256
a = [mm] \bruch{-1}{32} [/mm]

Mir fehlt aber jetzt das c? Hab ich irgendwo was vergessen oder falsch gemacht?

Vielen Dank schon mal für eure Hilfe :)

        
Bezug
Rekonstruktionsaufgaben: Antwort
Status: (Antwort) fertig Status 
Datum: 10:33 Di 03.12.2013
Autor: helicopter

Hallo,

> Aufgabe 2: ist eine Funktion 4. Grades, deren Graph
> symmetrisch zur y-Achse liegt, diese in -4 schneidet und in
> (-4|0) eine waagerechte Tangente besitzt. Bestimmen Sie die
> Funktionsgleichung.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Hallo zusammen,
>  
> wir haben in der Schule nun die Kurvendiskussion als Thema
> und sind an Rekonstruktionsaufgaben (Kurvendiskussion
> "rückwärts") angelangt. Ich habe aber noch so meine
> Probleme beim Aufstellen der bekannten Vorschriften und des
> Gleichungssystems. Für die gegebene Aufgabe hätte ich
> jetzt folgende Vorschriften aufgestellt:
>  
> Allg. Form: [mm]ax^{4}[/mm] + [mm]bx^{3}[/mm] + [mm]cx^{2}[/mm] + dx + e (richtig?)

Nutze doch den Hinweis dass die Funktion Achsensymmetrisch ist. Das bedeutet doch dass nur gerade Exponenten vorkommen, somit ist
dein Ansatz [mm] $f(x)=ax^{4}+bx^{2}+c$ [/mm] . Jetzt reichen auch die Informationen um die 3 unbekannten a,b und c zu bestimmen.

Gruß helicopter


Bezug
                
Bezug
Rekonstruktionsaufgaben: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 11:04 Di 03.12.2013
Autor: herpedia

Danke für den Ansatz :)

I f'(-4) = 0 --> -256a - 8b = 0
II f'(4) = 0 --> 256a + 8b = 0
III f'(0) = 0
IV f(0) = -4 --> c = -4

Jetzt habe ich aber das Problem, dass ich folgendes Gleichungssystem habe:

I   -256a - 8b = 0
II   256a + 8b = 0

Das würde sich ja beide aufheben?!?

Bezug
                        
Bezug
Rekonstruktionsaufgaben: Antwort
Status: (Antwort) fertig Status 
Datum: 11:14 Di 03.12.2013
Autor: helicopter

Hallo,

> Danke für den Ansatz :)
>  
> I f'(-4) = 0 --> -256a - 8b = 0
>  II f'(4) = 0 --> 256a + 8b = 0

>  III f'(0) = 0
>  IV f(0) = -4 --> c = -4

>  
> Jetzt habe ich aber das Problem, dass ich folgendes
> Gleichungssystem habe:
>  
> I   -256a - 8b = 0
>  II   256a + 8b = 0
>  
> Das würde sich ja beide aufheben?!?

Ja. Du hast $f(-4)=0$ nicht genutzt, daraus erhältst du nämlich $256a+16b=4$.

Gruß helicopter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de