Rektifizierbar < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:04 Mo 09.05.2011 | Autor: | jacob17 |
Hallo miteinander,
Da ich mit Kurven leider noch nicht sehr vertraut bin meine Frage hierzu in der Hoffnung jemand von euch kann mir das erklären.
k:[0,1] [mm] \to IR^2 [/mm] mit
[mm] k(t)=\begin{cases} (t^2,t^2) , & \mbox{für } t\in (0,0,5] \\ (0,5-0,5t,0,5-0,5t), & \mbox{für } t \in (o,5,1] \mbox{ ungerade} \end{cases} [/mm] Nun soll überprüft werden, ob die Kurve auch rektifizierbar ist. Mein Ansatz wäre zunächst eine Folge von Zerlegungen des Intervalls (0,1] anzugeben. Doch welche eignet sich hierzu? Und ist das überhaupt die richtige Vorgehensweise?
Viele Grüße
jacob
|
|
|
|
> Hallo miteinander,
>
> Da ich mit Kurven leider noch nicht sehr vertraut bin meine
> Frage hierzu in der Hoffnung jemand von euch kann mir das
> erklären.
> k:[0,1] [mm]\to IR^2[/mm] mit
> [mm]k(t)=\begin{cases} (t^2,t^2) , & \mbox{für } t\in (0,0,5] \\ (0,5-0,5t,0,5-0,5t), & \mbox{für } t \in (o,5,1] \mbox{ ungerade} \end{cases}[/mm]
> Nun soll überprüft werden, ob die Kurve auch
> rektifizierbar ist. Mein Ansatz wäre zunächst eine Folge
> von Zerlegungen des Intervalls (0,1] anzugeben. Doch welche
> eignet sich hierzu? Und ist das überhaupt die richtige
> Vorgehensweise?
> Viele Grüße
> jacob
Hallo jacob,
hast du dir die Kurve mal (vielleicht mittels
einer kleinen Wertetabelle) skizziert ?
Es handelt sich ja um eine eher merkwürdige
"Kurve" ... eigentlich aber überaus simpel. Für
die Frage nach Rektifizierbarkeit muss man aber
wohl auf die exakte Definition des Begriffs
"rektifizierbar" achten. Meiner Ansicht nach kommt
es (insbesondere für die Festlegung einer Länge)
darauf an, ob man den Weg oder die durch
ihn erzeugte Kurve oder "Spur" rektifizieren
und messen will.
LG
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 22:31 Mo 09.05.2011 | Autor: | jacob17 |
Vielen Dank für deine Antwort.
Angenommen ich möchte den Weg rektifizieren der diese Kurve erzeugt, wie wende ich dann die Definition an? Du hast von einer Wertetabelle gesprochen. Um diese Kurve zu zeichnen kann ich mir doch einfach Werte t aus dem Intervall [0,1] nehmen setze diese dann entweder in f1 oder f2 (also entweder oben oder unten ein) und erhalte dann Punkte im [mm] IR^2,oder? [/mm] Diese verbinde ich dann un erhalte meine Kurve. Kann man das so machen oder ist das zu einfach gedacht?
Viele Grüße
Jacob
|
|
|
|
|
> Vielen Dank für deine Antwort.
> Angenommen ich möchte den Weg rektifizieren der diese
> Kurve erzeugt, wie wende ich dann die Definition an? Du
> hast von einer Wertetabelle gesprochen. Um diese Kurve zu
> zeichnen kann ich mir doch einfach Werte t aus dem
> Intervall [0,1] nehmen setze diese dann entweder in f1 oder
> f2 (also entweder oben oder unten ein) und erhalte dann
> Punkte im [mm]IR^2,oder?[/mm] Diese verbinde ich dann un erhalte
> meine Kurve. Kann man das so machen oder ist das zu einfach
> gedacht?
Ja. Für eine Skizze reicht dies durchaus. Du merkst
daran auch sofort, wie der beschriebene Weg aussieht,
und es wird klar, wie er durchlaufen wird.
> Viele Grüße
> Jacob
LG Al-Chw.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:34 Mo 09.05.2011 | Autor: | Snarfu |
Hallo,
Dein Ansatz ist zwar theoretisch Richtig aber du müsstest dann ja zeigen das deine Kurve für ALLE möglichen Zerlegungen des Intervalls [0..1] beschränkte Länge hat...
Ich nehme mal an du hast die Aufgabe im Rahmen der Übung zu einer Vorlesung bekommen und kannst deswegen auf ein paar Sätze zurückgreifen.
Vielleicht ist einer dabei der so etwas ähnliches aussagt wie:
Sei I=[a,b] und [mm] c\in C^0(I,\IR^n) [/mm] stückweise [mm] C^1 \Rightarrow [/mm] c ist rektifizierbar.
Damit ginge das glaube ich ganz fix
Herzliche Grüße
|
|
|
|