www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Rekursionsformeln
Rekursionsformeln < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rekursionsformeln: Aufgabe 3
Status: (Frage) beantwortet Status 
Datum: 09:56 Mo 11.12.2006
Autor: doppelxchromosom

Aufgabe
Für k [mm] \in \IN [/mm] sei [mm] a_{k} [/mm] der Umfang des regelmäßigen [mm] 2^{k}3-Ecks, [/mm] dessen Inkreis den Radius 1 hat, und es sei [mm] b_{k} [/mm] der Umfang des regelmäßigen [mm] 2^{k}3-Ecks, [/mm] dess Umkreis den Radius 1 hat. Archimedes hat die Rekursionsformeln
[mm] a_{k+1}=\bruch{2a_{k}b_{k}}{a_{k}+b_{k}} [/mm] und [mm] b_{k+1}=\bruch{\wurzel{2a_{k}}b_{k}}{\wurzel{a_{k}+b_{k}}} [/mm] gefunden. Berechnen sie [mm] a_{1},...,a_{5},b_{1},...,b_{5} [/mm] undzeigen Sie, dass die Folgen [mm] (a_{k}) [/mm] und [mm] (b_{k}) [/mm] konvergent sind und einen gemeinsamen Grenzwert haben.

Hilfe!!!
Wie macht man das?
Ich habe leider keinen blassen Schimmer, was ich bei dieser Aufgabe überhaupt machen soll, bzw. wo ich da am besten mit was anfange. bitte helft mir!

        
Bezug
Rekursionsformeln: Antwort
Status: (Antwort) fertig Status 
Datum: 11:10 Mo 11.12.2006
Autor: angela.h.b.


> Für k [mm]\in \IN[/mm] sei [mm]a_{k}[/mm] der Umfang des regelmäßigen
> [mm]2^{k}3-Ecks,[/mm] dessen Inkreis den Radius 1 hat, und es sei
> [mm]b_{k}[/mm] der Umfang des regelmäßigen [mm]2^{k}3-Ecks,[/mm] dess Umkreis
> den Radius 1 hat. Archimedes hat die Rekursionsformeln
>  [mm]a_{k+1}=\bruch{2a_{k}b_{k}}{a_{k}+b_{k}}[/mm] und
> [mm]b_{k+1}=\bruch{\wurzel{2a_{k}}b_{k}}{\wurzel{a_{k}+b_{k}}}[/mm]
> gefunden. Berechnen sie [mm]a_{1},...,a_{5},b_{1},...,b_{5}[/mm]
> undzeigen Sie, dass die Folgen [mm](a_{k})[/mm] und [mm](b_{k})[/mm]
> konvergent sind und einen gemeinsamen Grenzwert haben.
>  Hilfe!!!
>  Wie macht man das?
>  Ich habe leider keinen blassen Schimmer, was ich bei
> dieser Aufgabe überhaupt machen soll, bzw. wo ich da am
> besten mit was anfange. bitte helft mir!

Hallo,

anfangen würde ich mit dem genauen Durchlesen:
Es geht also um besondere regelmäßige n-Ecke, nämlich die [mm] 2^k*3-Ecke [/mm] - mit dem In- bzw. Umkreisradius 1. Und zwar um deren Umfänge.

Um Formeln hierfür brauchst du Dich fast nicht mehr zu bemühen, das hat Archimedes bereits für Dich erledigt.

Zur Berechnung der geforderten Werte [mm] a_{1},...,a_{5},b_{1},...,b_{5} [/mm]
fehlen Dir lediglich die Startwerte für k=1. Also die entsprechenden Umfänge für Dreiecke. Die mußt Du berechnen.

Anhand der berechneten Werte [mm] a_{1},...,a_{5},b_{1},...,b_{5} [/mm] wird dir vermutlich ein Verdacht bzgl. der Monotonie der Folgen kommen. Der wäre zu beweisen.
Ich weiß jetzt nicht, wieviele Kenntnisse aus der Geometrie Ihr verwenden dürft: jedenfalls ist es offensichtlich, daß der Kreisumfang jeweils die Folgen beschränkt.
Darf man das verwenden, ist die Konvergenz klar.

Bleibt nur noch die Gleichheit des Grenzwertes, welche sich aus der Rekursion ergibt.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de