www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Rekursive Folge
Rekursive Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rekursive Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:44 Fr 03.11.2006
Autor: juerci

Aufgabe
Man zeige, dass die rekursiv definierte Folge
[mm] x_{1}=\wurzel{c} [/mm] , [mm] x_{n+1}=\wurzel{x_{n}+c} [/mm] , n=1,2,3,...
für c>0 konvergent ist und berechne den Grenzwert.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo, weiß bei diesem Beispiel nicht wo ich anfangen soll. Danke schon im Vorau für die HILFE!!

Mit freunlichen Grüßen J.R.

        
Bezug
Rekursive Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 14:36 Fr 03.11.2006
Autor: ullim

Hi,

um den Grenzwert auszurechnen, kannst Du ja [mm] a=\limes_{n\rightarrow\infty}x_n [/mm] setzten. Dann gilt auch [mm] a=\limes_{n\rightarrow\infty}x_{n+1} [/mm] und man kommt zu quadratischen Gleichung

[mm] a^2-a-c=0 [/mm] die man lösen kann.

mfg ullim

Bezug
                
Bezug
Rekursive Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:05 Fr 03.11.2006
Autor: juerci

Wie meinst du das, wie komme ich auf die qudratische Gleichung?Ich glaub ich steh gerade voll auf der Leitung!

Bezug
                        
Bezug
Rekursive Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 17:21 Fr 03.11.2006
Autor: ullim

Hi,

[mm] a=\wurzel{a+c} \Rightarrow [/mm]


[mm] a^2=a+c \Rightarrow [/mm]

[mm] a^2-a-c=0 [/mm]

mfg ullim

Bezug
                                
Bezug
Rekursive Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:41 Fr 03.11.2006
Autor: juerci

aha, super, auf das wäre ich glaube ich nie gekommen!klingt komplett logisch! aber, wenn ich die gleichung dann löse bekomme ich zwei grenzwerte heraus:
[mm] a_{1}=\bruch{1}{2}+\wurzel{\bruch{1}{4}+c} [/mm]
[mm] a_{2}=\bruch{1}{2}-\wurzel{\bruch{1}{4}+c} [/mm]

aber der Grenzwert ist ja eindeutig definiert!

Bezug
                                        
Bezug
Rekursive Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 18:56 Fr 03.11.2006
Autor: ullim

Hi,

es gibt aber nur eine von den beiden Lösungen, die größer gleich Null ist. Bei Deiner Folge ist aber jedes Folgenglied [mm] x_n\ge0. [/mm]

mfg ullim

Bezug
        
Bezug
Rekursive Folge: Und die Konvergenz?
Status: (Frage) beantwortet Status 
Datum: 16:22 Mi 08.11.2006
Autor: alonetogether

Ich habe auch diese Aufgabe zu rechne. Jedoch mit festem c=2. Ich habe jetzt die Berechnung des Grenzwertes verstanden. Aber wie sieht es mit der Konvergenz aus, wie beweist man, dass diese rekursive Folge konvergiert, bevor an den Grenzwert weiß?

Danke, Philipp

Bezug
                
Bezug
Rekursive Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 21:16 Mi 08.11.2006
Autor: Wutzara

Die kann man super über das Monotonieprinzip beweisen. Zuerst beweist man das die Folge streng monoton wächst. Das kann man sehr einfach über die vollständige Induktion beweisen.

Das die Folge eine obere Schranke besitzt ist ebenfalls nachweisbar. Die Folge ist immer kleiner/gleich als [mm] 1+\wurzel{c}. [/mm] Den Nachweis kann man ebenfalls durch vollständige Induktion beweisen.

Wenn beides vorhanden ist, was man ja bewiesen hat, so kann man behaupten das die Folge konvergiert.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de