www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Rekursive Folgen
Rekursive Folgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rekursive Folgen: Verständnisshilfe
Status: (Frage) beantwortet Status 
Datum: 13:10 Mi 18.11.2009
Autor: Inselinc

Aufgabe
a1= 5 ; a(n+1)=2 x an

Hi, ich komm nicht hinter die Logik der rekursiven Folgen. Als Ergebnis kommt raus :

a1 = 5
              a2 = 2·5 = 10
              a3 = 2·10 = 20
              a4 = 2·20 = 40
              a5 = 2·40 = 80

aber warum??

Was wird zb bei a3 gerechnet/ wie kommt man da auf 2 x 10???

Ich hoffe jemand kann mir mal kurz die Basics erklären, denn sonst ist wird die kommende Klausur ein richtig abenteuerliches Erlebnis x.X^^

Grüße
inselinc


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Rekursive Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:22 Mi 18.11.2009
Autor: reverend

Hallo inselinc,

das ist gar nicht so spannend.

Gegeben ist das erste Folgenglied [mm] (a_1=5) [/mm] und eine Vorschrift, wie die weiteren zu bilden sind.

[mm] a_{n+1}=2a_n [/mm]

Wenn Du für n (die Indexvariable) jetzt 1 einsetzt, dann besagt die Vorschrift: [mm] a_2=2a_1, [/mm] und da [mm] a_1 [/mm] ja bekannt ist, kannst Du [mm] a_2 [/mm] ausrechnen.

Setzt Du für n 2 ein, dann besagt die Vorschrift: [mm] a_3=2a_2, [/mm] und da [mm] a_2 [/mm] ja jetzt auch bekannt ist, kannst du [mm] a_3 [/mm] ausrechnen.

[...]

Setzt Du für n 16 ein, dann besagt die Vorschrift: [mm] a_{17}=2a_{16}, [/mm] und da Du sicher bis hierher mitgerechnet hast, müsstest Du auch [mm] a_{17}=327680 [/mm] herausbekommen.

Klarer?

Bei dieser Folge ist es (fast schon ausnahmsweise) sehr leicht, auf eine nicht rekursive Form zu kommen, so dass eine direkte Bildungsvorschrift für [mm] a_n [/mm] ohne Kenntnis aller Vorgänger aufgestellt werden kann. Siehst Du, wie?

Bis [mm] a_{35}=85899345920 [/mm] kommt man ja noch leicht, aber [mm] a_{2271} [/mm] möchte ich nicht mehr ausrechnen. Trotzdem kann ich mathematisch genau angeben, wie groß dieses Folgenglied ist.

lg
reverend

Bezug
                
Bezug
Rekursive Folgen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:53 Mi 18.11.2009
Autor: Inselinc

Aha , jetzt hab ichs verstanden. Danke für die ausführliche Erklärung denn ich hatte einen kleinen Hänger wie ich mit dem n und a umgehen muss.


a17 wäre dann : 5x32768 = 163840

und bildungsvorschirft lautet dann [mm] 2^x [/mm] bei a16 wäre es dann 2^15 ?!

Vielen Dank
inselinc


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de