www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Rekursive definierte Folge
Rekursive definierte Folge < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rekursive definierte Folge: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 21:29 Sa 13.11.2010
Autor: Random

Aufgabe
Gegeben sei für [mm] n\in\IN [/mm] die rekursiv definierte Folge

[mm] a_n_+_1=\bruch{1}{2}*(a_n+\bruch{b}{a_n}) [/mm]

mit [mm] a_1=b+1,b>0. [/mm]

a)Zeigen Sie mit vollständiger Induktion, dass [mm] a_n\ge\wurzel{b} [/mm] für alle [mm] n\in\IN [/mm] gilt.

HINWEIS: Für alle [mm] x,y\ge0 [/mm] gilt die Ungleichung zwischen arithmetischem und geometrischem Mittel

[mm] \wurzel{xy}\le\bruch{1}{2}*(x+y). [/mm]

Oh mein Gott.

Ich habe <absolut gar keine Ahnung!

Womit soll ich anfangen? Was wollen die überhaupt? xD

Erbitte Hilfe! xD

Vielen Dank im Voraus,

Ilya

        
Bezug
Rekursive definierte Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 22:01 Sa 13.11.2010
Autor: leduart

Hallo
"sie" wollen offensichtlich, dass die Folge nach unten beschränkt ist. Netterweise geben sie dir schon mal ne untere Schranke an.
dass es für [mm] a_1 [/mm] richtig ist, kann man (durch quadreiren nachrechnen.
der Rest ist dann Induktion.
Gruss leduart


Bezug
                
Bezug
Rekursive definierte Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:14 Sa 13.11.2010
Autor: Random

Soll ich also als 1. Induktionsschritt für [mm] a_n [/mm]  b+1 einsetzten?

Und warum ist es dann [mm] a_n_+_1? [/mm]

Was soll ich denn quadrieren?

Was ist denn die untere Schranke?

Vielen dank im Voraus,

Ilya

Bezug
                        
Bezug
Rekursive definierte Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 22:22 Sa 13.11.2010
Autor: leduart

Hallo
Weisst du, was ne Rekursion ist? aus [mm] a_1 [/mm] rechnet man [mm] a_2 [/mm] aus. aus [mm] a_2 a_3 [/mm] aus [mm] a_n [/mm] eben [mm] a_{n+1} [/mm]

eine unter Schranke ist ne Zahl die kleiner ist als alle Folgenglieder.

dass [mm] a_1 [/mm] kleiner ist als [mm] \wurzel{b} [/mm] sollst du ausrechnen. Also sollst du erstmal bestätigen [mm] b+1\ge\wurzel{b} [/mm]  unabhängig von der Wahl von b>0

Was eine Induktion ist solltest du auch wissen. wenn du weisst es ist richtig für [mm] a_1, [/mm] ist die Ind. Vors: es ist richtig für [mm] a_n [/mm]
dann muss man daraus folgern: es ist auch richtig für [mm] a_{n+1} [/mm]

Gruss leduart


Bezug
                                
Bezug
Rekursive definierte Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:41 So 14.11.2010
Autor: Random

Also ich weiss was Induktion ist, aber habe hier ja 2 Unbekannte.

Am sonsten verstehe ich nur Ost-Bahnhof.

Rekursion habe ich nie gehört, steht auch im Skript nichts von und die Erklärungen im Internet lassen sich nicht so einfach verstehen.

Was wäre denn mein erster Schritt hier bei der Aufgabe.

Soll ich einfach [mm] b+1\ge\wurzel{b} [/mm] hinschreiben? Und wie soll ich das ausrechenen?

Vielen Dank im Voraus!!!


Bezug
                                        
Bezug
Rekursive definierte Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 14:03 So 14.11.2010
Autor: reverend

Hallo Ilya,

> Also ich weiss was Induktion ist, aber habe hier ja 2
> Unbekannte.

Nein, Du hast einen Parameter b (den Du nicht kennst, aber der fest bleibt), und eine rekursiv definierte Folge.

> Am sonsten verstehe ich nur Ost-Bahnhof.

In Berlin heißt der doch jetzt Hauptbahnhof. ;-)

> Rekursion habe ich nie gehört, steht auch im Skript nichts
> von und die Erklärungen im Internet lassen sich nicht so
> einfach verstehen.

Rekursion heißt rückbezügliche Definition, also so wie schon leduart schrieb. Wenn Du [mm] a_n [/mm] kennst, kannst Du [mm] a_{n+1} [/mm] mit der Rekursionsformel bestimmen. Klar, b muss auch bekannt sein, aber dann hast du das Bildungsgesetz der Folge.

Das Problem ist, dass man, sagen wir [mm] a_{6089} [/mm] bisher nur ausrechnen kann, wenn man alle Folgenglieder bis direkt davor, also [mm] a_{6088} [/mm] schon berechnet hat.

> Was wäre denn mein erster Schritt hier bei der Aufgabe.
>
> Soll ich einfach [mm]b+1\ge\wurzel{b}[/mm] hinschreiben? Und wie
> soll ich das ausrechenen?

So geht ein Induktionsanfang. Behauptet wird, dass alle Folgenglieder [mm] \ge\wurzel{b} [/mm] sind. Das überprüfst Du nun erstmal für [mm] a_1=b+1. [/mm]

Da ist aber nichts auszurechnen, sondern "nur" die Wahrheit der Aussage zu überprüfen. Da Dir aber kein b vorliegt, musst Du die Aussage für alle b>0 beweisen. Das geht hier am einfachsten, wenn Du $ 0<b<1 $ und [mm] 1\le{b} [/mm] getrennt voneinander untersuchst.

> Vielen Dank im Voraus!!!

Grüße
reverend



Bezug
                                                
Bezug
Rekursive definierte Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:20 So 14.11.2010
Autor: Random

Hallo nochmal reverend,

Mein Lösungsansatz ist:

Induktionsanfang: [mm] a_1=b+1 [/mm]

[mm] b+1\ge\wurzel{b} [/mm]

[mm] 1+1\ge\wurzel{1} [/mm]

[mm] 2\ge1 [/mm]

Induktionsschritt: Zu zeigen gilt: [mm] a_n_+_1\ge\wurzel{b} [/mm]

[mm] \bruch{1}{2}(\wurzel{b}+\bruch{b}{\wurzel{b}})\ge\wurzel{b} [/mm]

Das führt mich zu [mm] \wurzel{b}\ge\wurzel{b} [/mm]

Somit gilt A(n+1).

Ist das in etwa richtig so? xD

MfG

Ilya

Bezug
                                                        
Bezug
Rekursive definierte Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 14:30 So 14.11.2010
Autor: reverend

Hallo nochmal,

> Mein Lösungsansatz ist:
>
> Induktionsanfang: [mm]a_1=b+1[/mm]
>  
> [mm]b+1\ge\wurzel{b}[/mm]
>
> [mm]1+1\ge\wurzel{1}[/mm]
>
> [mm]2\ge1[/mm]

Wie schön. Für b=1 ist [mm] a_1>\wurzel{b}. [/mm]

Du musst es aber für alle b>0 zeigen, auch für [mm] \bruch{312}{717}, [/mm] 0.8829, [mm] 5\bruch{1}{4} [/mm] und [mm] e^{2993461}. [/mm]
Ich hatte Dir doch schon eine Fallunterscheidung vorgeschlagen, vor allem, weil man dann Aussagen dazu treffen kann, wie sich b und [mm] \wurzel{b} [/mm] zueinander verhalten.

> Induktionsschritt: Zu zeigen gilt: [mm]a_n_+_1\ge\wurzel{b}[/mm]
>  
> [mm]\bruch{1}{2}(\wurzel{b}+\bruch{b}{\wurzel{b}})\ge\wurzel{b}[/mm]
>  
> Das führt mich zu [mm]\wurzel{b}\ge\wurzel{b}[/mm]
>  
> Somit gilt A(n+1).
>  
> Ist das in etwa richtig so? xD

Das gilt, wenn [mm] a_n=\wurzel{b} [/mm] ist. Davon wissen wir aber nichts. Wir gehen im Induktionsschritt nur davon aus, dass wir ein [mm] a_n [/mm] haben, über das wir schon sagen dürfen: [mm] a_n\ge\wurzel{b}. [/mm] Und dann ist zu zeigen, dass auch [mm] a_{n+1}\ge\wurzel{b} [/mm] ist.

Mit anderen Worten. So wie jetzt sind beide Schritte falsch.

Denk nochmal drüber nach, wo Du eigentlich hinwillst.
Grüße
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de