Relation der Rechtecke < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei M die Menge aller Rechtecke (auch solche, die degeneriert sind). Wir erklären zwei Relationen auf M:
U: Zwei Rechtecke stehen in Relation genau dann, wenn ihre Umfänge gleich sind.
A: Zwei Rechtecke stehen in Relation genau dann, wenn ihre Flächen gleich sind.
Zeige, dass U und A Äquivalenzrelationen sind. Finde Funktionen [mm] $I_{U}$ [/mm] und [mm] $I_{A}$, [/mm] sodass
[mm] \[I_{U}(R_{1})=I_{U}(R_{2})\] [/mm] genau dann, wenn die beiden Argumente in Relation stehen. Analog [mm] $I_{A}$. [/mm]
Zeige, dass diese Funktionen die Quotientenmengen $M/U$ und $M/A$ mit [mm] $\IR_{+}\cup\{0}$ [/mm] identifizieren. Konstruiere Repräsentanten jeder Restklasse in [mm] \[M/A\] [/mm] und $M/U$. |
Zu zeigen, dass es sich in beiden Fällen um Äquivalenzrelationen handelt ist nicht schwer, das folgt aus den Eigenschaften von der Gleichheit =. Bei der Wahl der Funktionen und dem Rest der Aufgabe scheitere ich allerdings gerade. Wie konstruiere ich eine Funktion von [mm] \[R_{1}\]? [/mm]
Um zu zeigen, dass diese Funktionen die Quotientenmengen mit
[mm] \[ \IR\cup\{0\}\] [/mm] identifizieren, muss ich zeigen, dass es sich um Bijektionen handelt. Das kann ich erst, wenn ich diese Funktionen habe...
Danke schon mal
|
|
|
|
Bei der Überprüfung, ob Äquivalenzrelationen vorliegen, mußt du diese Funktionen implizit schon benutzt haben:
[mm]I_U,\, I_A: \ M \to [0,\infty) \ ; \ \ I_U(R) = \text{Umfang von} \ R \, , \ \ I_A(R) = \text{Inhalt von} \ R[/mm]
Jede reelle Zahl [mm]u \geq 0[/mm] repräsentiert sozusagen eine Äquivalenzklasse von [mm]U[/mm], nämlich alle Rechtecke, deren Umfang gerade [mm]u[/mm] ist, die Äquivalenzklassen sind also die Urbilder der [mm]u[/mm] unter [mm]I_U[/mm]:
[mm]M/U = \left\{ \, {I_U}^{-1}(u) \, \left| \ u \in [0,\infty) \right. \right\}[/mm]
Und mit [mm]M/A[/mm] und [mm]I_A[/mm] geht es genau so.
|
|
|
|