Relationen < Graphentheorie < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 18:25 Fr 17.11.2006 | Autor: | DMG |
Aufgabe | Gibt es Zahlen n,k [mm] \in \IN [/mm] , sodass [mm] (2^{ {0,....,n} },\subseteq) [/mm] isomorph zu [mm] ({0,...,k},\le) [/mm] ist?
|
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Ich weiß nicht, ob es wichtig ist, aber bei dem Ausdruck [mm] (2^{ {0,....,n} },\subseteq) [/mm] muss der Wert 0,....,n in geschweiften Klammern stehen.
Nun meine Frage und meine Ansätze.
Isomorph bedeutet, dass eine Bijektion existiert zwischen den Relationen. [mm] (2^{ {0,....,n} },\subseteq) [/mm] ist eine Halbordnung und [mm] ({0,...,k},\le) [/mm] eine totale Halbordnung. Dabei ist [mm] ({0,...,k},\le) [/mm] eine aufsteigende Ordnung in einem [mm] Strang,(2^{ {0,....,n} },\subseteq) [/mm] hat dagegen eine verzweigte Struktur, da es ja die Potenzmenge ist oder irre ich mich?
Jedenfalls können diese beiden Relationen gar nicht bijektiv sein oder? Da sie völlig verschiedene Zuordnung und eigentlich auch unterschiedlich viele Elemente haben. Könnte mir jemand sagen, ob meine Überlegung richtig ist oder ich einfach einen Knick in der Logik habe.
mfg Gunnar
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:20 Di 21.11.2006 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|