www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Relationen
Relationen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Relationen: Hilfe
Status: (Frage) beantwortet Status 
Datum: 14:51 Do 30.12.2004
Autor: SusPie6

Hi ihr,

ich nutze gerade die freie Zeit, um mich für die Prüfungen im Januar und Februar vorzubereiten. Dabei wiederhole ich die Übungsaufgaben, welche wir wöchentlich bekommen haben. Leider komme ich teilweise nicht weiter beziehungsweise bin ich mir nicht sicher, ob meine Gedankengänge richtig sind. Über eure Hilfe würde ich mich wahnsinnig doll freuen.

1. Aufgabe:

Schreiben Sie formal
a) Es gibt höchstens ein x [mm] \in [/mm] M, für das die Aussage p gilt.
b) Es gibt genau ein x [mm] \in [/mm] M, für das die Aussage p gilt.

Ich habe folgende Lösungen:
a) [mm] \exists [/mm] x [mm] \in [/mm] M: [mm] \forall [/mm] y [mm] \in [/mm] M \ {x} : (nicht) p(y)

b) [mm] \exists [/mm] x [mm] \in [/mm] M: p(x) [mm] \wedge \forall [/mm] y [mm] \in [/mm] M \ {x} : (nicht) p(y)

Geht das denn so???


2. Aufgabe:

Zeigen Sie, dass die Teilerrelation eine Ordnungsrelation ist.

Dazu:
m/n : [mm] \gdw \exists [/mm] k [mm] \in \IN [/mm] : n=km
(Dies ist ja eine Ordnungsrelation auf den natürlichen Zahlenbereich.)

i) Reflexivität: m/m [mm] \gdw \exists [/mm] 1 [mm] \in \IN [/mm] : m= 1*m

ii) Antisymmetrie: m/n [mm] \wedge [/mm] n/m [mm] \Rightarrow [/mm] m=n
                            m/n [mm] \gdw \exists [/mm] k1 [mm] \in \IN [/mm] : n=k1m
                            n/m [mm] \gdw \exists [/mm] k2 [mm] \in \IN [/mm] : m=k2n
   n=k1(k2n)=(k1k2)n [mm] \Rightarrow [/mm] k1=k2=1 [mm] \Rightarrow [/mm] n=1*m
                                                                                        m=1*n
                                                                                        m=n

iii) Transitivität: m/n [mm] \wedge [/mm] n/p [mm] \Rightarrow [/mm] m/p
                         m/n [mm] \gdw \exists [/mm] k1 [mm] \in \IN [/mm] : n=k1m
                         n/p [mm] \gdw \exists [/mm] k2 [mm] \in \IN [/mm] : p=k2n
                         p=k2(k1m)=(k1k2)m
                         m/p.

Und???


3. Aufgabe:

Auf [mm] \IZ [/mm] x ( [mm] \IZ \backslash \{ 0 \} [/mm] sei die Relation [mm] \sim [/mm] definiert durch (a,b) [mm] \sim [/mm] (c,d) : [mm] \gdw [/mm] ad=bc. Zeigen Sie, dass [mm] \sim [/mm] eine Äquivalenzrelation ist.

Dazu habe ich leider keine Ansätze, aber ich wäre euch sehr dankbar, wenn ihr mir da weiter helfen könntet.

Vielen Dank im Voraus.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Relationen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:52 Do 30.12.2004
Autor: moudi

Zur  1. Aufgabe: Das ist ok.

Zur 3. Aufgabe: Das ist gerade die Aequivalenz von Brüchen wenn man
(a,b) als Bruch  [mm]\frac{a}{b}[/mm] interpretiert. Die Aequivalenzklassen
sind dann diejenigen Mengen von Brüche, die die gleiche rationale Zahl liefern.

Mit dieser Interpretation im Kopf sollte es eigentlich nicht  so schwierig sein.

mfg Moudi

Bezug
        
Bezug
Relationen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:27 Do 30.12.2004
Autor: maria

2.Aufgabe:das ist richtig
3.Aufgabe:
(a,b) mit [mm] b\not=0 [/mm]
(c,d) mit [mm] d\not=0 [/mm]

[mm] \underbrace{(a,b) }_{=x}\sim \underbrace{(c,d)}_{=y}: \gdw [/mm] ad=bc

1. Reflexivität: [mm] x\sim [/mm] x: [mm] (a,b)\sim(a,b):\Rightarrow [/mm] ab=ab
2. Symmetrie: [mm] x\sim [/mm] y [mm] \Rightarrow y\sim [/mm] x: [mm] (a,b)\sim [/mm] (c,d) [mm] \gdw [/mm] ad=bc
                                            [mm] \gdw [/mm]  cb=ad
                                            [mm] \gdw (c,d)\sim [/mm] (a,b)
3.Transitivität: [mm] (a,b)\sim [/mm] (c,d) und [mm] (c,d)\sim\underbrace{(e,f)}_{=z...f\not=0} \Rightarrow (a,b)\sim [/mm] (e,f)
                        1.ad=bc  [mm] |*f(\not=0) [/mm]
                        2.cf=de   [mm] |*b(\not=0) [/mm]
                   [mm] \Rightarrow [/mm] 1.adf=bcf
                      2.bcf=deb
                    [mm] \Rightarrow adf=deb|/d(\not=0) \Rightarrow [/mm]  af=eb  [mm] \Rightarrow (a,b)\sim [/mm] (e,f)
Das müsste logisch sein, oder?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de