www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Diskrete Mathematik" - Relationen
Relationen < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Relationen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:58 So 03.01.2010
Autor: kosak

Aufgabe
Es sei A={1,2,3,4}, B={ [mm] \alpha,\beta,\gamma [/mm] }, C={a,b,c,d,e}

a) Man gebe drei Beispiele für eine 4-stellige Relation auf B.
b) Wie viele verschiedene 4 - stellige Relationen gibt es auf B? kurze Begründung!

Hallo ihr Lieben!

So hab mal wieder ne Frage, ich hoffe ihr könnt mich weiter bringen.

zu a) zum Beispiel:

R1={ [mm] (\alpha,\alpha,\alpha,\alpha),(\beta,\beta,\beta,\beta),(\gamma,\gamma,\gamma,\gamma) [/mm] },

R2={ [mm] (\alpha,\beta,\beta,\beta),(\alpha,\gamma,\gamma,\gamma) [/mm] },

R3={ [mm] (\alpha,\beta,\alpha,\beta), (\beta,\gamma,\beta,\gamma), (\gamma,\alpha,\gamma,\alpha) [/mm] }

Sind die Beispiele richtig?

zu b) Bin mir nicht so sicher. Bei B X B wäre es ja |P(B)|= [mm] 2^n [/mm] also [mm] 2^{3*3}=2^9 [/mm] Relationen auf B. Wie macht man das bei B X B X B X B? ist es dann auch 2^(3*3*3*3)=2^(81)? oder vielleicht dann 4^(3*3*3*3)=4^(81)? Hab nicht wirklich eine Idee?Hab auch nirgendswo was gefunden?

Könnt ihr mir weiter helfen?

        
Bezug
Relationen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:23 So 03.01.2010
Autor: tobit09

Hallo kosak,

zu a):
Ja, alles bestens!

> zu b) Bin mir nicht so sicher. Bei B X B wäre es ja
> |P(B)|= [mm]2^n[/mm] also [mm]2^{3*3}=2^9[/mm] Relationen auf B. Wie macht
> man das bei B X B X B X B? ist es dann auch
> 2^(3*3*3*3)=2^(81)? oder vielleicht dann
> 4^(3*3*3*3)=4^(81)? Hab nicht wirklich eine Idee?Hab auch
> nirgendswo was gefunden?

Bis auf die Begründung sieht das gut aus! Die Menge der vierstelligen Relationen auf B (deren Anzahl der Elemente du bestimmen sollst) ist nichts anderes als die Menge der Teilmengen von [mm]B\times B\times B\times B[/mm], also die Potenzmenge von [mm]B\times B\times B\times B[/mm]. Diese hat [mm]2^n[/mm] Elemente, wenn [mm]B\times B\times B\times B[/mm] n Elemente hat. Und wie groß ist diese Anzahl n der Elemente von [mm]B\times B\times B\times B[/mm]? [mm]n=3*3*3*3[/mm] (drei Möglichkeiten für die erste Komponente, drei Möglichkeiten für die zweite Komponente, ..., drei Möglichkeiten für die vierte Komponente).

Viele Grüße
Tobias

Bezug
                
Bezug
Relationen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:43 So 03.01.2010
Autor: kosak

Danke:)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de