www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Relationen
Relationen < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Relationen: Tipp,Idee,Ansatz
Status: (Frage) beantwortet Status 
Datum: 23:41 Mo 05.12.2011
Autor: Jsassi93

Aufgabe
Es seien auf M=[1,2,...,m] beliebige,binäre Relationen erklärt.
a) Bestimmen Sie die Anzahl aller möglichen reflexiven Relationen!
b)Bestimmen Sie die Anzahl aller möglichen symmetrischen Relationen!
c)Erläutern Sie a) und b) am Beispiel m=3.

Aufgabe a) und b) habe ich gelöst,doch nun hänge ich an der Aufgabe c) fest.
Ich weiß,dass ich für m 3 einsetzen soll,jedoch weiß ich weder wie ich das erläutern soll bzw. ob ich das dann irgendwie zusammenfassen kann.
Hier einmal meine Lösung für Aufgabe b) :
u:=[(mi,mj)] -> i und j jeweils als "Fußnote"
i,j Elemtent [1,...,m] mit i kleiner gleich j
u hat m+(m-1)...+1=(m(m+1)) / (2) Elemente, also genau 2^((m²+m)/(2)) Teilmengen.

So nun bräuchte ich einen Ansatz,wie ich die 3 dort integriere.
Ich hoffe jemand kann mir helfen.
LG
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
Relationen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:39 Mi 07.12.2011
Autor: rainerS

Hallo!

Erstmal herzlich [willkommenvh]

> Es seien auf M=[1,2,...,m] beliebige,binäre Relationen
> erklärt.
>  a) Bestimmen Sie die Anzahl aller möglichen reflexiven
> Relationen!
>  b)Bestimmen Sie die Anzahl aller möglichen symmetrischen
> Relationen!
>  c)Erläutern Sie a) und b) am Beispiel m=3.
>  Aufgabe a) und b) habe ich gelöst,doch nun hänge ich an
> der Aufgabe c) fest.
>  Ich weiß,dass ich für m 3 einsetzen soll,jedoch weiß
> ich weder wie ich das erläutern soll bzw. ob ich das dann
> irgendwie zusammenfassen kann.
>  Hier einmal meine Lösung für Aufgabe b) :
>  u:=[(mi,mj)] -> i und j jeweils als "Fußnote"

>  i,j Elemtent [1,...,m] mit i kleiner gleich j
>  u hat m+(m-1)...+1=(m(m+1)) / (2) Elemente, also genau
> 2^((m²+m)/(2)) Teilmengen.
>  
> So nun bräuchte ich einen Ansatz,wie ich die 3 dort
> integriere.

Du hast recht, eigentlich musst du nur in deinen Lösungen m=3 setzen.

Dann ist [mm] $M=\{1,2,3\}$ [/mm] und du kannst alle möglichen reflexiven und symmetrischen Relationen direkt hinschreiben. Nach deiner Formel gibt es ja [mm] $2^{((3^2+3)/2)} [/mm] = 64$ symmetrische Relationen. Die könntest du aufschreiben. Das ist natürlich ziemlich aufwendig, daher denke ich, du sollst deine Argumentation oben für den Spezialfall m=3 erklären.

Viele Grüße
   Rainer




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de