www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Relationen" - Relationen auf \IZ
Relationen auf \IZ < Relationen < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Relationen auf \IZ: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:54 Di 20.11.2007
Autor: muy

Aufgabe
a) Auf der Menge [mm] \IZ [/mm] sei eine Relation R erklärt durch (x,y) [mm] \in [/mm] R [mm] \gdw [/mm] xy [mm] \ge [/mm] 0. Ist R eine Äquivalenzrelation? (mit Beweis)
b) Auf der Menge [mm] \IZ [/mm] \ {0} sei eine Relation S erklärt durch (x,y) [mm] \in [/mm] S [mm] \gdw [/mm] xy > 0. Ist S eine Äquivalenzrelation? (mit Beweis)
c) Falls bei a) oder b) eine Äquivalenzrelation vorliegt, geben Sie die zugehörigen Äquivalenzklassen an.

Kann mir jemand die Aufgabe erklären? Ich habe noch nicht einmal eine Idee was man von mir will, geschweige denn eine Idee für eine Lösung... :(

Was genau bedeutet denn zum Beispiel diese Erklärung der Relation...? Und was soll es ändern, wenn auf [mm] \IZ [/mm] \ {0} xy > 0 ist...?

Hilfe. [mm] :\ [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Relationen auf \IZ: Antwort
Status: (Antwort) fertig Status 
Datum: 17:47 Di 20.11.2007
Autor: angela.h.b.


> a) Auf der Menge [mm]\IZ[/mm] sei eine Relation R erklärt durch
> (x,y) [mm]\in[/mm] R [mm]\gdw[/mm] xy [mm]\ge[/mm] 0. Ist R eine Äquivalenzrelation?
> (mit Beweis)
>  b) Auf der Menge [mm]\IZ[/mm] \ {0} sei eine Relation S erklärt
> durch (x,y) [mm]\in[/mm] S [mm]\gdw[/mm] xy > 0. Ist S eine
> Äquivalenzrelation? (mit Beweis)
>  c) Falls bei a) oder b) eine Äquivalenzrelation vorliegt,
> geben Sie die zugehörigen Äquivalenzklassen an.

Hallo,

alles beginnt hier damit, daß Du weißt, was eine Äquivalenzrelation ist.

Weißt Du das?

Wenn nicht, mach Dich schlau.

Zu prüfen ist halt, ob die Bedigungen der Äquivalenzrelation für die hier erklärte Relation R gelten.

> Was genau bedeutet denn zum Beispiel diese Erklärung der
> Relation...?

Bei a) stehen zwei Elemente in Relation zueinander, wenn Ihr Produkt [mm] \ge [/mm] 0 ist.
Das ist halt so definiert.

> Und was soll es ändern, wenn auf $ [mm] \IZ [/mm] $ \ {0} xy > 0 ist...?

Das sollst Du dann ja herausfinden...
Die Lebenserfahrung lehrt: es ändert sich etwas, sonst stünde die Aufgabe nicht hier.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de