www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Relationen und Abbildungen
Relationen und Abbildungen < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Relationen und Abbildungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:13 Do 26.01.2012
Autor: Nadelspitze

Aufgabe 1
Sei p eine Primzahl. Wir definieren die folgende Relation [mm] \equiv [/mm] auf [mm] \IZ [/mm] wie folgt:
für alle a,b [mm] \in \IZ [/mm] gelte:
a [mm] \equiv [/mm] b [mm] :\gdw [/mm] p|(a-b).
Wir sagen dann: "a ist kongruent zu b modulo p" und schreiben a [mm] \equiv [/mm] b mod p.


1) Zeigen Sie, dass [mm] \equiv [/mm] eine Äquivalenzrelation auf [mm] \IZ [/mm] ist

Aufgabe 2
Sei Z/pZ := [mm] Z/\equiv. [/mm] Wie viele Elemente hat Z/pZ

Aufgabe 3
Sei [mm] m\in \IZ [/mm] mit p [mm] \not| [/mm] m. Zeigen Sie, dass die folgende Vorschrift für [mm] \mu_m [/mm] eine wohldefinierte Abbildung von Z/pZ nach Z/pZ auf die folgende Weise festlegt:
Für [mm] x\in \IZ [/mm]  sei [mm] \mu_m(|x|_\equiv):=[m*x]_\eqiuv. [/mm]

Aufgabe 4
Zeigen Sie, dass eine [mm] \mu_m [/mm] eine injektive Abbildung ist. Leiten Sie daraus ab, dass [mm] \mu_m [/mm] auch surjektiv ist.

1) Sei [mm] a\in \IZ [/mm] beliebig, dann ist a-a=0 und p|0 ->
das heißt für alle a gilt a [mm] \equiv [/mm] a
Damit ist [mm] \equiv [/mm] reflexiv

es gelte [mm] a\equiv [/mm] b, zu zeigen b [mm] \equiv [/mm] a...
aus [mm] a\equiv [/mm] b folgt p|a-b
a-b=-b+a  -> -(-b+a)=b-a
wenn p|a-b dann auch p|-(a-b) -> p|b-a -> b [mm] \equiv [/mm] a
also ist [mm] \equiv [/mm] symmetrisch

es gelte [mm] a\equiv [/mm] b und [mm] b\equiv [/mm] c,
zu zeigen  [mm] a\equiv [/mm] c,
Aus [mm] a\equiv [/mm] b folgt p|a-b -> [mm] p*q_1=a-b [/mm] mit [mm] q_1 \in \IZ [/mm]
aus [mm] b\equiv [/mm] c folgt p|b-c -> [mm] p*q_2=b-c [/mm] mit [mm] q_2 \in \IZ [/mm]

[mm] p*q_1=a-b [/mm] -> a= [mm] p*q_1+b [/mm]
[mm] p*q_2=b-c [/mm] -> [mm] -c=p*q_2-b [/mm]

[mm] a-c=a+(-c)=p*q_1+b+p*q_2-b=p*q_1+p*q_2=p*(q_1+q_2) [/mm] -> p|a-c
-> a [mm] \equiv [/mm] c
[mm] \equiv [/mm] ist transitiv und damit eine Äquivalenzrelation




2. Kann mir jemand die Menge erklären? Ich verstehe das irgendwie überhaupt nicht und ohne ein Verständniss für die Menge kann ich die weiteren Aufgaben leider überhaupt nicht lösen...
Was ist mit Z ohne die Äquivalenzrelation gemeint?
Danke vorab.



p.s. ich habe die Frage in keinem anderen Forum gepostet

        
Bezug
Relationen und Abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:25 Do 26.01.2012
Autor: fred97


> Sei p eine Primzahl. Wir definieren die folgende Relation
> [mm]\equiv[/mm] auf [mm]\IZ[/mm] wie folgt:
>  für alle a,b [mm]\in \IZ[/mm] gelte:
>  a [mm]\equiv[/mm] b [mm]:\gdw[/mm] p|(a-b).
>  Wir sagen dann: "a ist kongruent zu b modulo p" und
> schreiben a [mm]\equiv[/mm] b mod p.
>  
>
> 1) Zeigen Sie, dass [mm]\equiv[/mm] eine Äquivalenzrelation auf [mm]\IZ[/mm]
> ist
>  Sei Z/pZ := [mm]Z/\equiv.[/mm] Wie viele Elemente hat Z/pZ
>  Sei [mm]m\in \IZ[/mm] mit p [mm]\not|[/mm] m. Zeigen Sie, dass die folgende
> Vorschrift für [mm]\mu_m[/mm] eine wohldefinierte Abbildung von
> Z/pZ nach Z/pZ auf die folgende Weise festlegt:
>  Für [mm]x\in \IZ[/mm]  sei [mm]\mu_m(|x|_\equiv):=[m*x]_\eqiuv.[/mm]
>  Zeigen Sie, dass eine [mm]\mu_m[/mm] eine injektive Abbildung ist.
> Leiten Sie daraus ab, dass [mm]\mu_m[/mm] auch surjektiv ist.
>  1) Sei [mm]a\in \IZ[/mm] beliebig, dann ist a-a=0 und p|0 ->
>  das heißt für alle a gilt a [mm]\equiv[/mm] a
>  Damit ist [mm]\equiv[/mm] reflexiv
>  
> es gelte [mm]a\equiv[/mm] b, zu zeigen b [mm]\equiv[/mm] a...
>  aus [mm]a\equiv[/mm] b folgt p|a-b
>  a-b=-b+a  -> -(-b+a)=b-a

>  wenn p|a-b dann auch p|-(a-b) -> p|b-a -> b [mm]\equiv[/mm] a

>  also ist [mm]\equiv[/mm] symmetrisch
>  
> es gelte [mm]a\equiv[/mm] b und [mm]b\equiv[/mm] c,
>  zu zeigen  [mm]a\equiv[/mm] c,
>  Aus [mm]a\equiv[/mm] b folgt p|a-b -> [mm]p*q_1=a-b[/mm] mit [mm]q_1 \in \IZ[/mm]

>  
> aus [mm]b\equiv[/mm] c folgt p|b-c -> [mm]p*q_2=b-c[/mm] mit [mm]q_2 \in \IZ[/mm]
>  
> [mm]p*q_1=a-b[/mm] -> a= [mm]p*q_1+b[/mm]
>   [mm]p*q_2=b-c[/mm] -> [mm]-c=p*q_2-b[/mm]

>  
> [mm]a-c=a+(-c)=p*q_1+b+p*q_2-b=p*q_1+p*q_2=p*(q_1+q_2)[/mm] ->
> p|a-c
>  -> a [mm]\equiv[/mm] c

>  [mm]\equiv[/mm] ist transitiv und damit eine Äquivalenzrelation
>  
>


Das ist O.K.


>
>
> 2. Kann mir jemand die Menge erklären? Ich verstehe das
> irgendwie überhaupt nicht und ohne ein Verständniss für
> die Menge kann ich die weiteren Aufgaben leider überhaupt
> nicht lösen...
>  Was ist mit Z ohne die Äquivalenzrelation gemeint?


Hier ist nicht "ohne" gemeint !

Allgemein: Sei X eine Menge und [mm] \sim [/mm] eine Äquivalenzrelation auf X.  

Für x [mm] \in [/mm] X sei [x]:= [mm] \{z \in X: z \sim x\} [/mm]

Dann ist

               [mm] X/\sim [/mm] := [mm] \{[x]: x \in X\} [/mm]

FRED

>  Danke vorab.
>  
>
>
> p.s. ich habe die Frage in keinem anderen Forum gepostet


Bezug
                
Bezug
Relationen und Abbildungen: Aufgabe 2
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:19 Di 31.01.2012
Autor: Nadelspitze

Hallo Fred, zunächst einmal Entschuldigung für die (sehr) späte Reaktion. Ich habe nächste Woche gleich 3 Mathematik Klausuren und hatte mich nun erst einmal auf die vorran gegeangenen Übungsblätter gestürzt bevor ich hier weiter machen wollte.

> > 2. Kann mir jemand die Menge erklären? Ich verstehe das
> > irgendwie überhaupt nicht und ohne ein Verständniss für
> > die Menge kann ich die weiteren Aufgaben leider überhaupt
> > nicht lösen...
>  >  Was ist mit Z ohne die Äquivalenzrelation gemeint?
>  
>
> Hier ist nicht "ohne" gemeint !
>  
> Allgemein: Sei X eine Menge und [mm]\sim[/mm] eine
> Äquivalenzrelation auf X.  
>
> Für x [mm]\in[/mm] X sei [x]:= [mm]\{z \in X: z \sim x\}[/mm]
>  
> Dann ist
>
> [mm]X/\sim[/mm] := [mm]\{[x]: x \in X\}[/mm]
>  
> FRED


Super! das hat mir schon einmal wirklich sehr geholfen. Ich weiß nun, dass die Anzahl der Elemente von der Menge Z/pZ=p.

denn, nehmen wir einmal p=5
dann ist
[0]={...-10,-5,0,5,10,...} denn p|pm-px=p(m-x)
[1]={...-9,-4,1,6,11,...} denn jede dieser Zahlen y kann ich darstellen als [mm] y_i=q_i*p-1 [/mm]  und [mm] p|y_i-y_j=(q_i*p-1)-(q_j*p-1)=p*(q_i-q_j) [/mm]

und so weiter bis [4] denn 5 liegt dann ja wieder in der gleichen Äquivalensklasse wie 0




Bezug
        
Bezug
Relationen und Abbildungen: Aufgabe 3
Status: (Frage) überfällig Status 
Datum: 17:45 Di 31.01.2012
Autor: Nadelspitze

3)
Sei m [mm] \in \IZ [/mm] und p [mm] \not| [/mm] m. Zeigen Sie, dass die folgende Vorschrift für [mm] \mu_m [/mm] eine Wohldefinierte Abbildung von Z/pZ nach Z/pZ auf die folgende Weise festlegt:

Für x [mm] \in \IZ [/mm] sei [mm] \mu_m(|x|_\equiv):= [m*x]_\equiv [/mm]

Sei x,x' [mm] \in |x|__\equiv [/mm] also x [mm] \equiv [/mm] x'

es gilt p|x-x' [mm] \gdw [/mm] es gibt ein q [mm] \in \IZ [/mm] mit qp=x-x'

Also ist x=q*p+x'

betrachten wir nun [mm] \mu_m(x)=m*x=m*(pq+x')=mpq+mx' [/mm]
Also mx=mpq+mx'
mx-mx'=mpq=(mq)p -> p|mx-mx'
-> mx [mm] \equiv [/mm] mx'


Reicht dies zu zeigen? oder müsste ich jetzt auch noch zeigen:
[mm] \mu_m(x')=m*x'=m*(-pq+x)=-pqm+mx [/mm]
also mx'=-pqm+mx
mx'-mx=(-qm)p -> p|mx'-mx
-> mx' [mm] \equiv [/mm] mx

Denn eigenlich weiß ich ja schon, dass wenn mx [mm] \equiv [/mm] mx' dank der Symmetrie auch die Umkehrung gilt.

Bezug
                
Bezug
Relationen und Abbildungen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Do 02.02.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Relationen und Abbildungen: Aufgabe 4
Status: (Frage) überfällig Status 
Datum: 18:06 Di 31.01.2012
Autor: Nadelspitze

zuletzt noch Aufgabe 4 damit ich das auch alles hier zusammen habe

Zu zeigen: [mm] \mu_m [/mm] ist injektiv.

[mm] \mu_m(|x_1|_\equiv)=\mu_m(|x_2|_\equiv) [/mm]
das heißt [mm] [m*x_1]_\equiv=[m*x_2]_\equiv [/mm]
also [mm] p|(m*x_1)-(m*x_2) [/mm]
also [mm] p|m(x_1-x_2) [/mm]
da p [mm] \not|m [/mm] -> [mm] p|x_1-x_2 [/mm]
-> [mm] x_1 \equiv x_2 [/mm]
-> [mm] [x_1]_\equiv=[x_2]_\equiv [/mm]
also ist [mm] \mu_m [/mm] injektiv.

Da Z/pZ eine endliche Menge ist (mit p Elementen) und [mm] \mu_m [/mm] eine injektive Abbildung von Z/pZ nach Z/pZ, ist [mm] \mu_m [/mm] auch surjektiv, da Definitionsmenge = Zielmenge. Jedes Element aus Z/pZ wird also genau einem Element aus Z/pZ zugeordnet, da die Funktion injektiv ist, wird kein Element doppelt getroffen und demnach muss jedes Element genau einmal getroffen werden.

Bezug
                
Bezug
Relationen und Abbildungen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Do 02.02.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de