www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Finanzmathematik" - Rentenbarwert nach n
Rentenbarwert nach n < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rentenbarwert nach n: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:37 Do 16.10.2008
Autor: KevDi

Hallo

Wie der Titel sagt habe ich ein Problem bei der Auflösung der allgemeinen vor und nachschüssigen Rentenbarwertformel nach n.
Kann mir jmd zeigen wie man sie allgemein auflöst?? Also keine Zahlen

Schon mal Danke im vorraus

KEvDI

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Rentenbarwert nach n: Antwort
Status: (Antwort) fertig Status 
Datum: 17:00 Do 16.10.2008
Autor: M.Rex

Hallo und [willkommenmr]

Ich zeige dir das mal anhand des vorschüssigen Barwerts:

    $ [mm] R_{0}=r\cdot{}\bruch{q^{n}-1}{q-1}\cdot{}\bruch{1}{q^{n-1}} [/mm] $

    $ [mm] \gdw R_{0}=\bruch{r*(q^{n}-1)}{q-1}\cdot{}\bruch{1}{q^{n-1}} [/mm] $

    $ [mm] \gdw R_{0}=\left(\bruch{r\cdot{}q^n}{q-1}-\bruch{r}{q-1}\right)\cdot{}\bruch{1}{q^{n-1}} [/mm] $


    $ [mm] \gdw R_{0}=\bruch{r\cdot{}q^n}{q-1}\cdot{}\bruch{1}{q^{n-1}}-\bruch{r}{q-1}\cdot{}\bruch{1}{q^{n-1}} [/mm] $


    $ [mm] \gdw R_{0}=\bruch{r\cdot{}q^n}{(q-1)\cdot{}q^{n-1}}-\bruch{r}{(q-1)\cdot{}q^{n-1}} [/mm] $


    $ [mm] \gdw R_{0}=\bruch{r\cdot{}q^n-r}{(q-1)\cdot{}q^{n-1}} [/mm] $


    $ [mm] \gdw R_{0}=\bruch{r\cdot{}(q^{n}-1)}{(q-1)\cdot{}q^{n-1}} [/mm] $


    $ [mm] \gdw \bruch{R_{0}}{r}=\bruch{q^{n}-1}{q^{n}-q^{n-1}} [/mm] $


    $ [mm] \gdw \bruch{R_{0}}{r}=\bruch{q^{n-1}\cdot{}q}{(q-1)\cdot{}q^{n-1}}-\bruch{1}{(q-1)\cdot{}q^{n-1}} [/mm] $


    $ [mm] \gdw \bruch{R_{0}}{r}=\bruch{q}{q-1}-\bruch{1}{(q-1)\cdot{}q^{n-1}} [/mm] $

    $ [mm] \gdw \bruch{R_{0}}{r}-\bruch{q}{q-1}=-\bruch{1}{(q-1)\cdot{}q^{n-1}} [/mm] $

    $ [mm] \gdw \left(\bruch{R_{0}}{r}-\bruch{q}{q-1}\right)*(q-1)*q^{n-1}=-1 [/mm] $

    $ [mm] \gdw (q-1)\cdot{}q^{n-1}=\bruch{-1}{\bruch{R_{0}}{r}-\bruch{q}{q-1}} [/mm] $

    $ [mm] \gdw q^{n-1}=\bruch{-1}{(q-1)\left(\bruch{R_{0}}{r}-\bruch{q}{q-1}\right)} [/mm] $

Kommst du jetzt weiter?

Marius

Bezug
                
Bezug
Rentenbarwert nach n: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:08 Do 16.10.2008
Autor: KevDi

mmh irgendwie komm ich damit nicht klar. Kannst du es mir vielleicht anhand dieser Formel für den vorschüssigen barwert zeigen??

[mm]R =\bruch {r*q(q^n-1)} {q^n*(q-1)}[/mm]

Bezug
                        
Bezug
Rentenbarwert nach n: Antwort
Status: (Antwort) fertig Status 
Datum: 17:16 Do 16.10.2008
Autor: M.Rex


> mmh irgendwie komm ich damit nicht klar. Kannst du es mir
> vielleicht anhand dieser Formel für den vorschüssigen
> barwert zeigen??
>  
> [mm]R =\bruch {r*q(q^n-1)} {q^n*(q-1)}[/mm]


Versuche dich erstmal selber. Welche Teile der Formel können denn jetzt schon auf die andere Seite? DIe ohne n.

[mm] R=\bruch{r*q(q^n-1)}{q^n*(q-1)} [/mm]
[mm] \gdw \bruch{R(q-1)}{r*q}=\bruch{q^{n}-1}{q^n} [/mm]
[mm] \gdw \bruch{R(q-1)}{r*q}=\bruch{q^{n}}{q^{n}}-\bruch{1}{q^n} [/mm]
[mm] \gdw \bruch{R(q-1)}{r*q}=1-\bruch{1}{q^n} [/mm]

Jetzt bist du erstmal wieder dran

Marius



Bezug
                                
Bezug
Rentenbarwert nach n: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:40 Do 16.10.2008
Autor: KevDi

okay habs und zwar folgendermaßen gemacht

R(q-1)/r*q/1 = [mm] 1-q^n [/mm]

R(q-1)/r*q/1 -1 = [mm] q^n [/mm]
log(r(q-1)/r*q/1 -1) = n log q
log(r(q-1)/r*q/1 -1)/log q = n

Bezug
                                        
Bezug
Rentenbarwert nach n: Antwort
Status: (Antwort) fertig Status 
Datum: 17:45 Do 16.10.2008
Autor: M.Rex

Ich glaube, du meinst das richtige, aber durch die etwas unsaubere Schreibweise (ohne Formeleditor) wird unübersichtlich. Ausserdem befürchte ich, ist dir ein - abhanden gekommen.

> okay habs und zwar folgendermaßen gemacht
>  
> R(q-1)/r*q/1 = [mm]1-q^n[/mm]
>  
> R(q-1)/r*q/1 -1 = [mm]\red{-}q^n[/mm]

EDIT:

$ [mm] \bruch{R(q-1)}{r\cdot{}q}=1-\bruch{1}{q^n} [/mm] $
$ [mm] \gdw \bruch{R(q-1)}{r\cdot{}q}-1=-\bruch{1}{q^n} [/mm] $
$ [mm] \stackrel{Kehrwert}{\gdw} \bruch{1}{\bruch{R(q-1)}{r\cdot{}q}-1}=-q^{n} [/mm] $
Und jetzt bist du wieder dran.

Marius

Bezug
                                                
Bezug
Rentenbarwert nach n: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:50 Do 16.10.2008
Autor: KevDi

okay habs wirklich vergessen ^^
Jetzt Funktioniert es

Danke für deine Hilfe

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de