www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Finanzmathematik" - Rentenrechnung
Rentenrechnung < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rentenrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:41 Di 12.09.2006
Autor: firefox1331

Aufgabe
So habe die Frage aus dem Gespräch mit meinen alten Mathelehrer von icq kopiert :
Will meiner Freundin bei ner Mathe Aufgabe helfen , komm aber nicht weiter:
Es geht um einen RENtenrechnung :
10 Jahres Einzahlung
Jährliche Einzahlung nachschüssig : 2500 €
Zinsen 6 % (q wäre also 1,06 )
nach 5 Jahren Einzahlung setzt der Geldanleger seine jährliche Zahlung 2 Jahre aus .
Danach ghet es weiter wie gewohnt.
Die Rentenformel ist meines erachtens nach : [mm] Rn=R*((q^n-1)/(q-1)) [/mm]

Muss man dann die Formel erst für n= 5 anwenden , dann normal mit der Zinsformel Kn = K 0 * [mm] q^n [/mm] weiter machen (für die 2 Jahre ohne einzahlung und dann weiter machen  mit der renten formel für n = 3 ? Das ergebnis für diese Aufgabe ist 26818,25, aber ich finde keinen richtigen weg um auf dieses Ergebnis zu komen , welches von Lehrer an der schule meiner Freundin stammt
Als Zwishcenergebnis für die ertsen 5 Jahre + die 2 ohne einzahlung habe ich 15834,59412 rasu

mathemator (06:23 PM) :
Sorry, aber das ist mir jetzt zum Nachrechnen zu mühsam. Aber der von dir skizzierte Lösungsweg sollte im Prinzip richtig sein.

Wie ist der letzte rechennschritt ? oder habe ich grundsätzlich Fehler ? Bitte helfen !



        
Bezug
Rentenrechnung: Lösungsweg
Status: (Antwort) fertig Status 
Datum: 21:51 Di 12.09.2006
Autor: VNV_Tommy

Hallo firefox1331!

> So habe die Frage aus dem Gespräch mit meinen alten
> Mathelehrer von icq kopiert :
> Will meiner Freundin bei ner Mathe Aufgabe helfen , komm
> aber nicht weiter:
> Es geht um einen RENtenrechnung :
> 10 Jahres Einzahlung
> Jährliche Einzahlung nachschüssig : 2500 €
> Zinsen 6 % (q wäre also 1,06 )
> nach 5 Jahren Einzahlung setzt der Geldanleger seine
> jährliche Zahlung 2 Jahre aus .
>  Danach ghet es weiter wie gewohnt.
>  Die Rentenformel ist meines erachtens nach :
> [mm]Rn=R*((q^n-1)/(q-1))[/mm]
>  Muss man dann die Formel erst für n= 5 anwenden , dann
> normal mit der Zinsformel Kn = K 0 * [mm]q^n[/mm] weiter machen (für
> die 2 Jahre ohne einzahlung und dann weiter machen  mit der
> renten formel für n = 3 ? Das ergebnis für diese Aufgabe
> ist 26818,25, aber ich finde keinen richtigen weg um auf
> dieses Ergebnis zu komen , welches von Lehrer an der schule
> meiner Freundin stammt
> Als Zwishcenergebnis für die ertsen 5 Jahre + die 2 ohne
> einzahlung habe ich 15834,59412 rasu
>  
> mathemator (06:23 PM) :
> Sorry, aber das ist mir jetzt zum Nachrechnen zu mühsam.
> Aber der von dir skizzierte Lösungsweg sollte im Prinzip
> richtig sein.
>  
> Wie ist der letzte rechennschritt ? oder habe ich
> grundsätzlich Fehler ? Bitte helfen !
>  
>  

Schwierig bei dieser Aufgabe ist die Tatsache, daß die Rente nachschüssig jedoch die Zinsen auf das bisher eingezahlte Vermögen vorschüssig gezahlt werden.
Prinzipiell ist dein Ansatz aber richtig. Bis zu einem gewissen Punkt kann man auch die herkömmlichen Rentenformeln verwenden.

Ich schildere dir einfach mal meine Methode:

1) Der Wert für die nachschüssige Rente mit einer Einzahlung von 2.500 Euro jählich, einem zins von 6% und einer Laufzeit von 5 Jahren kann mit der von dir genannten Formel: [mm] R_{n}=R*\bruch{q^{n}-1}{q-1} [/mm] berechnen. Für [mm] R_{5} [/mm] erhält man einen Wert von 14.092,73 Euro.
(das ist demnach der Wert aller Einzahlungen am ENDE des Jahres 5)

2) Nun wird für 2 Jahre die nachschüssige Rentenzahlung ausgelassen. Das bedeutet, das am Ende des 6.Jahres und am Ende des 7.Jahre keine Zahlungen erfolgen. Die nächste Zahlung von 2.500 Euro erfolgt erst wieder am ENDE des 8.Jahres!
Bis dahin wird jedoch das bisher schon angesparte Vermögen von 14.092,73 Euro mit 6% über 3 Jahre (vom Anfang des 6. bis zum Anfang des 9. Jahres) verzinst. Das bedeutet, das somit am ANFANG des 9. Jahres [mm] 14.092,73*1,06^{3}=16.784,67Euro [/mm] durch den Zinseszins des bisherigen Vermögens entstanden sind. Hier kommen aber noch die 2.500 Euro aus der Zahlung am Ende des 8.Jahres hinzu, sodaß am Anfang des 9.Jahres nunmehr 19.284,67 Euro (=16.784,67+2.500) angespart wurden.

3) Die 19.284,67 Euro werden nun über 1 Jahr verzinst. Somit entstehen am Anfang des 10. Jahres 20.441,75 Euro. Hinzu kommen noch die 2.500 Euro die am Ende des 9.Jahres eingezahlt wurden. Somit stehen am Anfang des 10. Jahres 22.941,75 Euro auf dem Konto.

4) Zuletzt werden die 22.941,75 € wieder über 1 Jahr mit 6% verzinst wodurch dann quasi am Anfang des 11. Jahres 24.318,25 Euro (=22.941,75*1,06) auf dem Konto stünden. Nun noch die letzte Zahlung von 2.500 Euro aus dem Ende des 10. Jahres hinzuaddiert und du erhälst die geforderten 26.818,25 Euro.

Gruß,
Tommy

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de