www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Finanzmathematik" - Rentenrechnung
Rentenrechnung < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rentenrechnung: Restbetrag errechnen
Status: (Frage) beantwortet Status 
Datum: 16:26 Di 08.09.2009
Autor: itil

Aufgabe
Über einen Betrag von 300.000 GE kann sofort verfügt werden

Es wird beacbsichtigt, sofort beginnend, järhlich nachschüssige Renten
ind er Höhe von 25000 GE zu beziehen. Wie oft kann diese Rente bei d = 3%
bezogen werden? Welche Restrate kann mit der letzten Volrat enoch bezogen werden?



Bn = R * [mm] \bruch{1-vm^{n*m}}{rm^{\ bruch{m}{p}}-1} [/mm]

Bn = Barwert nachschüssig = 300.000
R = Rate = 2500
vm = 1/r = 0,97
r = 1/(1-d) = 1,030927835
n = Jahre = gefragt
m = anzahl Versinzungsperioden = 1
p = anzahl Raten = 12


300.000 = 25000 * [mm] \bruch{1-0,97^{n}}{1,030927835^{\bruch{1}{12}}-1} [/mm]

[mm] \bruch{300000}{25000} [/mm] * 0,0025414914 = [mm] 1-0,97^{n} [/mm]
[mm] 0,97^{n} [/mm] =1 - 0,304978960
[mm] 0,97^n [/mm] = 0,9695021032
n*log(0,97) = log( 0,9695021032)
n= log( 0,9695021032) / log(0,97)
n = 1,016856231

300.000= R * [mm] \bruch{1-0,97^{1}}{1,030927835^{\bruch{1}{12}}-1} [/mm]

R= 25414,91418

________

Prof. Lösung:

n = 15,2281 = 15 Vollraten

Restbetrag = 5597,64
Teilrate Tn: Aus der Äquivalenzgleichung:
BN = BN ( R pa ns = 250000; n = 25) + Tn * v^15



        
Bezug
Rentenrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:51 Di 08.09.2009
Autor: MathePower

Hallo itil,

> Über einen Betrag von 300.000 GE kann sofort verfügt
> werden
>  
> Es wird beacbsichtigt, sofort beginnend, järhlich
> nachschüssige Renten
> ind er Höhe von 25000 GE zu beziehen. Wie oft kann diese
> Rente bei d = 3%
>  bezogen werden? Welche Restrate kann mit der letzten
> Volrat enoch bezogen werden?
>  
>
> Bn = R * [mm]\bruch{1-vm^{n*m}}{rm^{\ bruch{m}{p}}-1}[/mm]
>  
> Bn = Barwert nachschüssig = 300.000
>  R = Rate = 2500
>  vm = 1/r = 0,97
>  r = 1/(1-d) = 1,030927835
>  n = Jahre = gefragt
>  m = anzahl Versinzungsperioden = 1
>  p = anzahl Raten = 12
>  
>
> 300.000 = 25000 *
> [mm]\bruch{1-0,97^{n}}{1,030927835^{\bruch{1}{12}}-1}[/mm]
>  
> [mm]\bruch{300000}{25000}[/mm] * 0,0025414914 = [mm]1-0,97^{n}[/mm]
>  [mm]0,97^{n}[/mm] =1 - 0,304978960
>  [mm]0,97^n[/mm] = 0,9695021032
>  n*log(0,97) = log( 0,9695021032)
>  n= log( 0,9695021032) / log(0,97)
>  n = 1,016856231
>  
> 300.000= R *
> [mm]\bruch{1-0,97^{1}}{1,030927835^{\bruch{1}{12}}-1}[/mm]
>  
> R= 25414,91418
>  
> ________
>  
> Prof. Lösung:
>  
> n = 15,2281 = 15 Vollraten
>  
> Restbetrag = 5597,64
>  Teilrate Tn: Aus der Äquivalenzgleichung:
>  BN = BN ( R pa ns = 250000; n = 25) + Tn * v^15
>  
>


Der Gesambetrag von 300.000 GE wird jährlich mit [mm]r=\bruch{1}{1-d}[/mm] verzinst.
Dann kommst Du auch auf das Ergebnis von Deinem Prof.


Gruss
MathePower

Bezug
                
Bezug
Rentenrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:39 Di 08.09.2009
Autor: itil

ich verstehe nicht ganz worauf du hinauswillst..??

Bezug
                        
Bezug
Rentenrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:47 Di 08.09.2009
Autor: MathePower

Hallo itil,

> ich verstehe nicht ganz worauf du hinauswillst..??


ich habe Dir hier erläutert,
wie Dein Prof auf die Laufzeit n gekommen ist.


Gruss
MathePower

Bezug
                                
Bezug
Rentenrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:00 Di 08.09.2009
Autor: itil

ja, aber ich habe doch mit 1/(1-0,03) gerechnet = 1,030927835


Bezug
                                        
Bezug
Rentenrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:49 Di 08.09.2009
Autor: MathePower

Hallo itil,


> ja, aber ich habe doch mit 1/(1-0,03) gerechnet =
> 1,030927835
>  

Ja, das hast Du.

Du hast aber statt mit jährlichen Zahlungen
mit monatlichen Zahlungen gerechnet.

Folglich muss die Gleichung so lauten:

[mm]300.000 = 25000 * \bruch{1-0,97^{n}}{1,030927835^{\blue{1}}-1} [/mm]


Gruss
MathePower

Bezug
                                                
Bezug
Rentenrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:16 Di 08.09.2009
Autor: itil

waaaa.. ja stimmt ganz übersehen..tut leid.

also nochmal:


$ 300.000 = 25000 [mm] \cdot \bruch{1-0,97^{n}}{1,030927835^{\blue{1}}-1} [/mm]

[mm] \bruch{300.000 }{25000}*1,030927835^{1} [/mm] = [mm] 1-0,97^{n} [/mm]

0,3711340206 = [mm] 1-0,97^{n} [/mm]

[mm] 0,97^{n} [/mm] = 1- 0,3711340206

[mm] 0,97^{n} [/mm] = 0,628865794

n * log(0,97) = log( 0,628865794)

n = log (0,628865794) / log(0,97)

n=15,228141426

jetzt mit exakt 15 rechnen:


300.000 = R [mm] \cdot{} \bruch{1-0,97^{15}}{1,030927835^{\blue{1}}-1} [/mm]

300.000 = R * [mm] \bruch{0,3667488109}{0,309278351} [/mm]

300.000 = R * 11,85821155


R = 25298,92


hmm iwie scheine ich da was nicht richitg gemacht zu haben...:-(

Bezug
                                                        
Bezug
Rentenrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:37 Di 08.09.2009
Autor: MathePower

Hallo itil,

> waaaa.. ja stimmt ganz übersehen..tut leid.
>  
> also nochmal:
>  
>
> $ 300.000 = 25000 [mm]\cdot \bruch{1-0,97^{n}}{1,030927835^{\blue{1}}-1}[/mm]
>
> [mm]\bruch{300.000 }{25000}*1,030927835^{1}[/mm] = [mm]1-0,97^{n}[/mm]
>  
> 0,3711340206 = [mm]1-0,97^{n}[/mm]
>  
> [mm]0,97^{n}[/mm] = 1- 0,3711340206
>  
> [mm]0,97^{n}[/mm] = 0,628865794
>  
> n * log(0,97) = log( 0,628865794)
>  
> n = log (0,628865794) / log(0,97)
>  
> n=15,228141426
>  
> jetzt mit exakt 15 rechnen:
>  
>
> 300.000 = R [mm]\cdot{} \bruch{1-0,97^{15}}{1,030927835^{\blue{1}}-1}[/mm]
>
> 300.000 = R * [mm]\bruch{0,3667488109}{0,309278351}[/mm]
>  
> 300.000 = R * 11,85821155
>  
>
> R = 25298,92
>  
>
> hmm iwie scheine ich da was nicht richitg gemacht zu
> haben...:-(


Der Restbetrag ergibt sich wie folgt:

[mm]300.000*r^{15}-R*\bruch{r^{15}-1}{r-1}[/mm]


[mm]=r^{15}*\left(300.000-R*\bruch{1-r^{-15}}{r-1}\right)[/mm]

[mm]=r^{15}*\left(300.000-R*\bruch{1-vm^{15}}{r-1}\right)[/mm]

mit R=25000, [mm]r=\bruch{1}{1-d}[/mm], vm=1-d.


Gruss
MathePower

Bezug
                                                                
Bezug
Rentenrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:42 Mi 09.09.2009
Autor: itil

ultrarießen DANKESCHÖN :-)

und der Restbetrag ergibt sich immer so?
r ist nicht immer 1/1-d schon klar usw. aber die formel anscih bleibt immer die gleiche ? egal ob endwert oder barwert?

Meine Formeln:

ganzjährig:

En = R * [mm] \bruch{r^n -1}{r-1} [/mm]


Ev = R * [mm] \bruch{r^n -1}{1-v} [/mm]

Bn = R * [mm] \bruch{1- v^n}{r-1} [/mm]

Bv = R * [mm] \bruch{1- v^n}{1-v} [/mm]


unterjährig:

En = R * [mm] \bruch{rm^{m*n}-1}{rm^{\bruch{m}{p}} -1} [/mm]


Ev = R * [mm] \bruch{rm^{m*n}-1}{1 - vm^{\bruch{m}{p}}} [/mm]


Bn = R * [mm] \bruch{1 - vm^{m*n}}{rm^{\bruch{m}{p}} -1} [/mm]


Ev = R * [mm] \bruch{1 - vm^{m*n}}{1 - vm^{\bruch{m}{p}}} [/mm]

das sind ansich alle formeln die wir so nutzen.


erklärung:

E= Endwert
B = Barwert
Bv = Barschwert vorschüssig
Ev = Endwert vorschüssig
Bn = Barwert nachschüssig
En = Endwert nachschüssig
r= 1 + i ODER 1/1-d= aufzinsungsfaktor
v = 1/r = abzinsugnsfaktor
m = anzahl verzinsungsperioden pro jahr (1,2,4,12)
p = anzahl raten pro jahr (1,2,4,12)
R= Rate
n = Jahre

oke sollts gewesen sein

restbetrag immer gleich auszurechnen?



Bezug
                                                                        
Bezug
Rentenrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:58 Mi 09.09.2009
Autor: MathePower

Hallo itil,

> ultrarießen DANKESCHÖN :-)
>  
> und der Restbetrag ergibt sich immer so?
> r ist nicht immer 1/1-d schon klar usw. aber die formel
> anscih bleibt immer die gleiche ? egal ob endwert oder
> barwert?


Der Barwert wird bei ganzjähriger Verzinsung n-mal verzinst,
davon ziehst Du dann den entsprechenden Endwert ab.
Das ist dann Dein Restbetrag.

Entsprechend bei unterjähriger Verzinsung.


>  
> Meine Formeln:
>  
> ganzjährig:
>  
> En = R * [mm]\bruch{r^n -1}{r-1}[/mm]
>  
>
> Ev = R * [mm]\bruch{r^n -1}{1-v}[/mm]
>  
> Bn = R * [mm]\bruch{1- v^n}{r-1}[/mm]
>  
> Bv = R * [mm]\bruch{1- v^n}{1-v}[/mm]
>  
>
> unterjährig:
>  
> En = R * [mm]\bruch{rm^{m*n}-1}{rm^{\bruch{m}{p}} -1}[/mm]
>  
>
> Ev = R * [mm]\bruch{rm^{m*n}-1}{1 - vm^{\bruch{m}{p}}}[/mm]
>  
>
> Bn = R * [mm]\bruch{1 - vm^{m*n}}{rm^{\bruch{m}{p}} -1}[/mm]
>  
>
> Ev = R * [mm]\bruch{1 - vm^{m*n}}{1 - vm^{\bruch{m}{p}}}[/mm]
>  
> das sind ansich alle formeln die wir so nutzen.
>  
>
> erklärung:
>  
> E= Endwert
>  B = Barwert
>  Bv = Barschwert vorschüssig
>  Ev = Endwert vorschüssig
>  Bn = Barwert nachschüssig
>  En = Endwert nachschüssig
>  r= 1 + i ODER 1/1-d= aufzinsungsfaktor
>  v = 1/r = abzinsugnsfaktor
>  m = anzahl verzinsungsperioden pro jahr (1,2,4,12)
>  p = anzahl raten pro jahr (1,2,4,12)
>  R= Rate
>  n = Jahre
>  
> oke sollts gewesen sein
>  
> restbetrag immer gleich auszurechnen?
>  

>


Siehe oben.


Gruss
MathePower
  

Bezug
                                                                                
Bezug
Rentenrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:11 Mi 09.09.2009
Autor: itil

also hatte ich eh recht?

erst n ausrechnen, dann mit ganzzaligem n-wert rechnen
in die gleiche formel einsetzen wie man n bekommen hat und dann abziehen fertig.

Bezug
                                                                                        
Bezug
Rentenrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:19 Mi 09.09.2009
Autor: MathePower

Hallo itil,

> also hatte ich eh recht?
>  
> erst n ausrechnen, dann mit ganzzaligem n-wert rechnen
>  in die gleiche formel einsetzen wie man n bekommen hat und
> dann abziehen fertig.


Nach dem was ich im vorigen Post geschrieben habe, ja.


Gruss
MathePower

Bezug
                
Bezug
Rentenrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:02 Di 08.09.2009
Autor: itil

wieso stimmt mein n auch nicht?.. :-(

Bezug
                        
Bezug
Rentenrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:52 Di 08.09.2009
Autor: MathePower

Hallo itil,

> wieso stimmt mein n auch nicht?.. :-(


Siehe dazu diesen Post.

Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de