www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Repräsentantenunabhänigkeit
Repräsentantenunabhänigkeit < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Repräsentantenunabhänigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:47 So 29.05.2011
Autor: Sup

Aufgabe
Sei f: M [mm] \to [/mm] N und eine Relation R:={ [mm] (m_1,m_2) \in M\times [/mm] M: [mm] f(m_1)=f(m_2) [/mm] } [mm] \subset [/mm] M [mm] \times [/mm] M gegeben.
R definiert Äquivalenzklassen [x]={ m [mm] \in [/mm] M: (x, m) [mm] \in [/mm] R } und wir bezeichnen die Menge der Äquivalenzklassen (Quotiontenmenge) mit M/R= { [x: x [mm] \in [/mm] M }.
u [mm] \in [/mm] [x] heißt Repräsentant der Äquivalenzklasse [x].
a) Zeigen sie dass R eine Äquivalenzrelation ist
b) Sei [mm]\hat f[/mm]: M/R [mm] \to [/mm] R, [x] [mm] \mapsto[/mm]  [mm]\hat f[/mm]([x]):= f(u), u [mm] \in [/mm] [x]. Zeigen sie, dass [mm]\hat f[/mm] wohldefiniert (d.h. der Wert [mm]\hat f[/mm]ist unabhänig vom gewähltenRepräsentanten u [mm] \in [/mm] [x]) und injektiv ist.

Guten Morgen,

die a) war ja nicht das Problem.

b)
Hier hab ich mich erstmal informiert, was das ganze eig heißt und hoffe das stimmt.
Äquivalenzklasse [x]: Das sind alle Objekte die zu x äquivalent sind. Oben hieß das dann f(x)=f(m)
Quotientenmenge : Menge aller Äquivalenzklassen
Repräsentant: ist ein Element aus einer Äquivalenzklasse

Wirklich weiter bin ich aber noch nicht gekommen.
Ich soll zeigen, dass [mm]\hat f[/mm] wohldefiniert ist, indem ich zeige, dass [mm]\hat f[/mm]([x]) vom Repräsentanten unabhänig ist.
Das heißt für mich, dass für [mm]\hat f[/mm]([x]) immer das selbe rauskommt, egal was ich für "([x])" einsetze.

Dann müsste aber gelten, dass [mm] f([x_1])=f([x_2]) [/mm] ist, denn man soll ja auch zeigen, dass die Funktion injektiv ist.

Wirklich weiter bin ich aber leider nicht gekommen...

Gruß,
sup

        
Bezug
Repräsentantenunabhänigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 14:08 So 29.05.2011
Autor: fred97


> Sei f: M [mm]\to[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

N und eine Relation R:={ [mm](m_1,m_2) \in M\times[/mm]

> M: [mm]f(m_1)=f(m_2)[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

} [mm]\subset[/mm] M [mm]\times[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

M gegeben.

>  R definiert Äquivalenzklassen [x]={ m [mm]\in[/mm] M: (x, m) [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

R

> } und wir bezeichnen die Menge der Äquivalenzklassen
> (Quotiontenmenge) mit M/R= { [x: x [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

M }.

>  u [mm]\in[/mm] [x] heißt Repräsentant der Äquivalenzklasse [x].
>  a) Zeigen sie dass R eine Äquivalenzrelation ist
>  b) Sei [mm]\hat f[/mm]: M/R [mm]\to[/mm] R, [x] [mm]\mapsto[/mm]  [mm]\hat f[/mm]([x]):= f(u),
> u [mm]\in[/mm] [x]. Zeigen sie, dass [mm]\hat f[/mm] wohldefiniert (d.h. der
> Wert [mm]\hat f[/mm]ist unabhänig vom gewähltenRepräsentanten u
> [mm]\in[/mm] [x]) und injektiv ist.
>  Guten Morgen,
>  
> die a) war ja nicht das Problem.
>  
> b)
>  Hier hab ich mich erstmal informiert, was das ganze eig
> heißt und hoffe das stimmt.
>  Äquivalenzklasse [x]: Das sind alle Objekte die zu x
> äquivalent sind. Oben hieß das dann f(x)=f(m)
> Quotientenmenge : Menge aller Äquivalenzklassen
>  Repräsentant: ist ein Element aus einer
> Äquivalenzklasse
>  
> Wirklich weiter bin ich aber noch nicht gekommen.
>  Ich soll zeigen, dass [mm]\hat f[/mm] wohldefiniert ist, indem ich
> zeige, dass [mm]\hat f[/mm]([x]) vom Repräsentanten unabhänig
> ist.
>  Das heißt für mich, dass für [mm]\hat f[/mm]([x]) immer das
> selbe rauskommt, egal was ich für "([x])" einsetze.

Nein ! Du sollst zeigen:  f(u)=f(v)  für u,v [mm] \in [/mm] [x]


FRED

>  
> Dann müsste aber gelten, dass [mm]f([x_1])=f([x_2])[/mm] ist, denn
> man soll ja auch zeigen, dass die Funktion injektiv ist.
>  
> Wirklich weiter bin ich aber leider nicht gekommen...
>  
> Gruß,
>  sup


Bezug
                
Bezug
Repräsentantenunabhänigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:53 So 29.05.2011
Autor: Sup


> Nein ! Du sollst zeigen:  f(u)=f(v)  für u,v [mm]\in[/mm] [x]
>  
>
> FRED

sicher? Hab noch einen Kollegen gefragt, der sagt man soll zeigen:
f([x])=f([y]) für x,y [mm] \in [/mm] M mit [x]=[y]

Mir ist deins einleuchtender, denn es heißt ja Repräsentantenunabhänigkeit und der Repräsentant ist [mm] \in [/mm] [x]. Aber ich frag hier besser nochmal nach :-)

ok wenn u,v [mm] \in [/mm] [x]
dann gilt ja auch u ~ v [mm] \Rightarrow [/mm] f(u)=f(v)
das kannst ja nicht schon gewesen sein oder?

Bezug
                        
Bezug
Repräsentantenunabhänigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 08:04 Mo 30.05.2011
Autor: fred97


> > Nein ! Du sollst zeigen:  f(u)=f(v)  für u,v [mm]\in[/mm] [x]
>  >  
> >
> > FRED
>  sicher?


Ja


> Hab noch einen Kollegen gefragt, der sagt man soll
> zeigen:
> f([x])=f([y]) für x,y [mm]\in[/mm] M mit [x]=[y]


Dann mach Dir und Deinem Kollegen klar, dass ich nichts anderes gesagt habe !!!

>  
> Mir ist deins einleuchtender, denn es heißt ja
> Repräsentantenunabhänigkeit und der Repräsentant ist [mm]\in[/mm]
> [x]. Aber ich frag hier besser nochmal nach :-)
>  
> ok wenn u,v [mm]\in[/mm] [x]
>  dann gilt ja auch u ~ v [mm]\Rightarrow[/mm] f(u)=f(v)
>  das kannst ja nicht schon gewesen sein oder?


Doch, das wars schon.

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de