www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Residuum
Residuum < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Residuum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:36 Sa 19.05.2007
Autor: victoria5

Aufgabe
Es sei f(z) = [mm] \bruch{1}{z(sinz)^4} [/mm] , z [mm] \not= k\pi [/mm] (k [mm] \in \IZ) [/mm]
Man bestimme Res(f,0)

Habe mit den Residuen so meine liebe Mühe und Not und komme auch mit dieser Aufgabe nicht zurecht. Meine einzige Idee wäre es sin z durch Z - [mm] \bruch{Z^3}{3!} [/mm] + [mm] \bruch{Z^5}{5!} [/mm] ... auszudrücken. Aber wie mache ich dann weiter?

Vielen Dank für Eure Hilfe


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Residuum: Antwort
Status: (Antwort) fertig Status 
Datum: 09:52 So 20.05.2007
Autor: Leopold_Gast

Das mit der Potenzreihe ist die richtige Idee. Klammere im Nenner zunächst [mm]z[/mm] aus. Du erhältst

[mm]f(z) = \frac{1}{z^5} \cdot \frac{1}{\left( 1 - \frac{z^2}{6} + \frac{z^4}{120} \mp \ldots \right)^4}[/mm]

Den zweiten Bruch mußt du jetzt in eine Potenzreihe entwickeln. Da nur gerade Potenzen vorkommen, kann man von vorneherein

[mm]a + b \, z^2 + c \, z^4 + \ldots[/mm]

dafür ansetzen. Dabei ist [mm]c[/mm] das gesuchte Residuum, denn mit dem Faktor [mm]\frac{1}{z^5}[/mm] davor liefert die vierte Potenz den Beitrag [mm]c \, z^{-1}[/mm].

Zunächst ist die vierte Potenz der Klammer zu berechnen:

[mm]\left( 1 - \frac{z^2}{6} + \frac{z^4}{120} \mp \ldots \right)^4 = 1 - \frac{2}{3} \, z^2 + \frac{1}{5} \, z^4 + \ldots[/mm]

Darauf kommt man, indem man die Klammern nach dem Distributivgesetz "jeder mit jedem" ausmultipliziert. Man muß dabei nur Potenzen berücksichtigen, die auch relevante Beiträge liefern:

[mm]\left( 1 - \frac{z^2}{6} + \frac{z^4}{120} \mp \ldots \right) \cdot \left( 1 - \frac{z^2}{6} + \frac{z^4}{120} \mp \ldots \right) \cdot \left( 1 - \frac{z^2}{6} + \frac{z^4}{120} \mp \ldots \right) \cdot \left( 1 - \frac{z^2}{6} + \frac{z^4}{120} \mp \ldots \right)[/mm]

Das konstante Glied entsteht durch [mm]1 \cdot 1 \cdot 1 \cdot 1[/mm]. Das quadratische Glied entsteht, wenn drei konstante Glieder aus jeweils einer Klammer auf ein quadratisches treffen:

[mm]1 \cdot 1 \cdot 1 \cdot \left( - \frac{1}{6} \, z^2 \right) + 1 \cdot 1 \cdot \left( - \frac{1}{6} \, z^2 \right) \cdot 1 + 1 \cdot \left( - \frac{1}{6} \, z^2 \right) \cdot 1 \cdot 1 + \left( - \frac{1}{6} \, z^2 \right) \cdot 1 \cdot 1 \cdot 1 = - \frac{2}{3} \, z^2[/mm]

Bei der vierten Potenz ist es jetzt eine Idee schwerer. Überlege selbst, wie man auf [mm]\frac{1}{5} \, z^4[/mm] kommt. Letztlich spielt da ein bißchen elementare Kombinatorik eine Rolle.

Im nächsten Schritt hat man jetzt den Kehrwert der Potenzreihe zu bilden. Am besten fängst du so an:

[mm]\left(1 - \frac{2}{3} \, z^2 + \frac{1}{5} \, z^4 + \ldots \right) \cdot \left(a + b \, z^2 + c \, z^4 + \ldots \right) = 1[/mm]

Links mußt du wieder wie beschrieben ausmultiplizieren. Das liefert dir durch Vergleich mit der rechten Seite (dort kommt nur das konstante Glied 1 vor, alle anderen Koeffizienten sind 0) Bedingungen für [mm]a,b,c[/mm], welche du dann nach und nach berechnen kannst. Ich habe (ohne Gewähr) [mm]a = 1 \, , \ b = \frac{2}{3} \, , \ c = \frac{11}{45}[/mm] erhalten.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de