www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Residuum Berechnen
Residuum Berechnen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Residuum Berechnen: tipp,Rückfrage,Korrektur
Status: (Frage) beantwortet Status 
Datum: 13:00 Di 28.06.2022
Autor: nkln

Aufgabe
Berechne das folgende reelle Integral

[mm] $\int_{-\infty}^{\infty} \! \frac{x^2cos(x)}{x^4-1} \, [/mm] dx$

Hallo

Sei zunächst [mm] $R(x):=\frac{x^2cos(x)}{x^4-1}$ [/mm] . Dann ist der Nenner Grad $= 4$ und der Zählergrad $=2$ . Insbesondre ist der Zählergrad um $2$ kleiner als der Nenner Grad.
$R(x)$ hat zwei reelle Polstellen und zwar [mm] $x_1=1$ [/mm] und [mm] $x_2=-1$ [/mm] . Des weiteren hat $R(x)$ die Polstellen [mm] $x_3=i$ [/mm] und [mm] $x_4=-i$. [/mm]

Wie machen ich jetzt weiter? Wir hatten bisher immer den Fall, dass $R(x) $keine reellen Polstellen hatte, was muss ich jetzt machen?

Danke für die Hilfe!

        
Bezug
Residuum Berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:53 Di 28.06.2022
Autor: Chris84

Huhuuuu
Wo kommt das Integral denn her?

Das Integral kann doch nicht berechnet werden bzw. konvergiert nicht? Hast du mal den Integranden geplottet? Du integrierst ja tatsaechlich ueber zwei Polstellen (naemlich +1 und -1).

Was man in der Physik manchmal macht, ist die Polstellen in der komplexen Ebene ein wenig nach oben (oder unten) zu heben, also etwa $1+i [mm] \epsilon$, [/mm] und am Ende den Limes [mm] $\epsilon \rightarrow [/mm] 0$ zu betrachten.

Das geht aber nur, wenn das Integral auch konvergiert und das sehe ich hier nicht ;)

Schoene Gruesse,
Chris

Bezug
        
Bezug
Residuum Berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:30 Mi 29.06.2022
Autor: fred97

Sei $f(x):= [mm] \frac{x^2cos(x)}{1-x^4} [/mm] $ . Wir betrachten $f$ im Intervall $(0,1)$ und stellen fest:

$x^2f(x) [mm] \to \infty$ [/mm] für $x [mm] \to1 [/mm] -0.$

Also gibt es ein $a [mm] \in [/mm] (0,1)$ mit $x^2f(x) [mm] \ge [/mm] 1$ für alle $x [mm] \in [/mm] [a,1)$. Folglich ist

$f(x) [mm] \ge \frac{1}{x^2}$ [/mm] für $ a [mm] \le [/mm] x <1.$

Damit ist das Integral [mm] $\int_0^1f(x) [/mm] dx$  divergent. Somit ist auch

$ [mm] \int_{-1}^{1} \! \frac{x^2cos(x)}{x^4-1} \, [/mm] dx $ divergent.

Fazit: das Integral

$ [mm] \int_{-\infty}^{\infty} \! \frac{x^2cos(x)}{x^4-1} \, [/mm] dx $ ist divergent.

Bezug
        
Bezug
Residuum Berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:28 Do 30.06.2022
Autor: HJKweseleit


> Berechne das folgende reelle Integral
>  
> [mm]\int_{-\infty}^{\infty} \! \frac{x^2cos(x)}{x^4-1} \, dx[/mm]
>  

Kann es sein, dass ein Lese- oder Schreibfehler vorliegt und es

[mm]\int_{-\infty}^{\infty} \! \frac{x^2cos(x)}{x^4\red{+}1} \, dx[/mm]

heißen soll? Das gäbe Sinn.


Bezug
                
Bezug
Residuum Berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:38 Do 30.06.2022
Autor: fred97


> > Berechne das folgende reelle Integral
>  >  
> > [mm]\int_{-\infty}^{\infty} \! \frac{x^2cos(x)}{x^4-1} \, dx[/mm]
>  
> >  

>
> Kann es sein, dass ein Lese- oder Schreibfehler vorliegt
> und es
>  
> [mm]\int_{-\infty}^{\infty} \! \frac{x^2cos(x)}{x^4\red{+}1} \, dx[/mm]
>  
> heißen soll? Das gäbe Sinn.

Ja, das könnte gut sein.

Hier: https://www.asc.tuwien.ac.at/~herfort/BAKK/Roetzer.pdf  auf Seite 5 findet man in diesem Fall Formeln

>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de