www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Resolventenmenge und Spektrum
Resolventenmenge und Spektrum < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Resolventenmenge und Spektrum: Hilfe beim Beweis
Status: (Frage) beantwortet Status 
Datum: 13:36 So 23.03.2008
Autor: Docy

Aufgabe
Zeigen Sie, dass die Resolventenmenge [mm] \phi(A)=\{\lambda\in X| (\lambda*I-A)^{-1} ex. und ist stetig \} [/mm] offen ist, und dass [mm] \sigma(A)= \IC\backslash\phi(A) [/mm] kompakt ist.

Hallo,
ich brauche hier den Beweis für eine Prüfung, aber ich komme da irgendwie nicht drauf, kann mir hier bitte jemand helfen?

Gruß Docy

        
Bezug
Resolventenmenge und Spektrum: Antwort
Status: (Antwort) fertig Status 
Datum: 14:14 Mo 24.03.2008
Autor: ullim

Hi,

sei [mm] F_\lambda=(\lambda{I}-A)^{-1}. [/mm] Da [mm] F_\lambda [/mm] stetig ist kann man [mm] \lambda_0 [/mm] so wählen, dass gilt

[mm] \parallel F_\lambda [/mm] - [mm] F_{\lambda_0} \parallel<\parallel F_\lambda^{-1} \parallel^{-1} [/mm]

Da [mm] (\summe_{n=1}^{\infty}(F_\lambda^{-1}(F_\lambda-F_{\lambda_0}))^n)F_\lambda^{-1} [/mm] konvergent ist wegen,

[mm] \parallel F_\lambda^{-1}(F_\lambda-F_{\lambda_0}) \parallel\le\parallel F_\lambda^{-1} \parallel*\parallel F_\lambda-F_{\lambda_0} \parallel<1 [/mm] s. Steigkeit, folgt

[mm] (\summe_{n=1}^{\infty}(F_\lambda^{-1}(F_\lambda-F_{\lambda_0}))^n)F_\lambda^{-1}=\bruch{1}{1-F_\lambda^{-1}(F_\lambda-F_{\lambda_0})}F_\lambda^{-1}=F_{\lambda_0}^{-1} [/mm] s. geometrische Reihe.

Also existiert [mm] F_{\lambda_0} [/mm] und ist nach Konstruktion auch stetig also ist die Resolventenmenge offen. Das Komplement ist abgeschlossen und das es nur endlich viele Eigenwerte gibt auch kompakt.

mfg ullim





Bezug
                
Bezug
Resolventenmenge und Spektrum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:25 Mo 24.03.2008
Autor: Docy

Hallo,
> Hi,
>  
> sei [mm]F_\lambda=(\lambda{I}-A)^{-1}.[/mm] Da [mm]F_\lambda[/mm] stetig ist
> kann man [mm]\lambda_0[/mm] so wählen, dass gilt
>  
> [mm]\parallel F_\lambda[/mm] - [mm]F_{\lambda_0} \parallel<\parallel F_\lambda^{-1} \parallel^{-1}[/mm]

warum kann man das hier so wählen???

> Da
> [mm](\summe_{n=1}^{\infty}(F_\lambda^{-1}(F_\lambda-F_{\lambda_0}))^n)F_\lambda^{-1}[/mm]
> konvergent ist wegen,
>  
> [mm]\parallel F_\lambda^{-1}(F_\lambda-F_{\lambda_0}) \parallel\le\parallel F_\lambda^{-1} \parallel*\parallel F_\lambda-F_{\lambda_0} \parallel<1[/mm]
> s. Steigkeit, folgt
>  
> [mm](\summe_{n=1}^{\infty}(F_\lambda^{-1}(F_\lambda-F_{\lambda_0}))^n)F_\lambda^{-1}=\bruch{1}{1-F_\lambda^{-1}(F_\lambda-F_{\lambda_0})}F_\lambda^{-1}=F_{\lambda_0}^{-1}[/mm]
> s. geometrische Reihe.

Warum ist das [mm] \bruch{1}{1-F_\lambda^{-1}(F_\lambda-F_{\lambda_0})}F_\lambda^{-1}=F_{\lambda_0}^{-1} [/mm] ???

>  
> Also existiert [mm]F_{\lambda_0}[/mm] und ist nach Konstruktion auch
> stetig also ist die Resolventenmenge offen. Das Komplement
> ist abgeschlossen und das es nur endlich viele Eigenwerte
> gibt auch kompakt.
>  

Wäre super, wenn du mir das noch erklären könntest.
Gruß Dimitrij


Bezug
                        
Bezug
Resolventenmenge und Spektrum: Antwort
Status: (Antwort) fertig Status 
Datum: 23:52 Mo 24.03.2008
Autor: ullim

Hi,

> Hallo,
>  > Hi,

>  >  
> > sei [mm]F_\lambda=(\lambda{I}-A)^{-1}.[/mm] Da [mm]F_\lambda[/mm] stetig ist
> > kann man [mm]\lambda_0[/mm] so wählen, dass gilt
>  >  
> > [mm]\parallel F_\lambda[/mm] - [mm]F_{\lambda_0} \parallel<\parallel F_\lambda^{-1} \parallel^{-1}[/mm]
>  
> warum kann man das hier so wählen???

Damit es später passt.

>  > Da

> >
> [mm](\summe_{n=1}^{\infty}(F_\lambda^{-1}(F_\lambda-F_{\lambda_0}))^n)F_\lambda^{-1}[/mm]
> > konvergent ist wegen,
>  >  
> > [mm]\parallel F_\lambda^{-1}(F_\lambda-F_{\lambda_0}) \parallel\le\parallel F_\lambda^{-1} \parallel*\parallel F_\lambda-F_{\lambda_0} \parallel<1[/mm]
> > s. Steigkeit, folgt
>  >  
> >
> [mm](\summe_{n=1}^{\infty}(F_\lambda^{-1}(F_\lambda-F_{\lambda_0}))^n)F_\lambda^{-1}=\bruch{1}{1-F_\lambda^{-1}(F_\lambda-F_{\lambda_0})}F_\lambda^{-1}=F_{\lambda_0}^{-1}[/mm]
> > s. geometrische Reihe.
>  
> Warum ist das
> [mm]\bruch{1}{1-F_\lambda^{-1}(F_\lambda-F_{\lambda_0})}F_\lambda^{-1}=F_{\lambda_0}^{-1}[/mm]
> ???
>  >  

Einfach ausmultiplizieren.

Der Nenner ergibt

[mm] 1-F_\lambda^{-1}(F_\lambda-F_{\lambda_0})=1-F_\lambda^{-1}*F_\lambda+F_\lambda^{-1}*F_{\lambda_0}=F_\lambda^{-1}*F_{\lambda_0} [/mm]

Daraus folgt der Rest.

> > Also existiert [mm]F_{\lambda_0}[/mm] und ist nach Konstruktion auch
> > stetig also ist die Resolventenmenge offen. Das Komplement
> > ist abgeschlossen und das es nur endlich viele Eigenwerte
> > gibt auch kompakt.
>  >  
> Wäre super, wenn du mir das noch erklären könntest.
>  Gruß Dimitrij
>  

mfg ullim


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de