www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Restgliedformel sinh(x)
Restgliedformel sinh(x) < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Restgliedformel sinh(x): McLaurin Reihe
Status: (Frage) beantwortet Status 
Datum: 15:20 Sa 09.05.2009
Autor: tedd

Aufgabe
Zeigen Sie durch Untersuchung des Restglieds, dass die Funktion sinh(x) für alle reellen Zahlen durch dessen Reihe dargestellt werden kann.

Also die McLaurin Reihe zu sinh(x) lautet

[mm] f(x)=\summe_{k=0}^{\infty}{\bruch{x^{2m+1}}{(2m+1)!}} [/mm]

Folgende Restgliedformel habe ich aus meinem mathe-Skript:
[mm] \left|R_{n+1}\right| \le \max_{t\in[0;x]} \left|\bruch{x^{n+1}}{(n+1)!}*f^{n+1}(t)\right| [/mm]

[mm] \left|R_{n+1}\right| \le \bruch{|x|^{n+1}}{(n+1)!} [/mm] * [mm] \max_{t\in[0;x]} \left|*f^{n+1}(t)\right| [/mm]

So und jetzt komme ich schon nicht weiter...
Da das x jede reelle Zahl sein kann, kann das t ebenfalls jede reelle Zahl sein.
[mm] f^{n+1} [/mm] ist abwechselnd cosh(x) und sinh(x) die beide maximal werden für x [mm] \rightarrow \infty [/mm] also t [mm] \rightarrow \infty [/mm] und somit steht in dem Betrag doch [mm] \infty [/mm] oder nicht?

[mm] \bruch{|x|^{n+1}} [/mm] geht für [mm] n\rightarrow \infty [/mm] und [mm] x\in\IR [/mm] gegen 0

[mm] f^{n+1}(t) [/mm] könnte ich doch auch so schreiben oder?

[mm] f^{n+1}(t)=\bruch{1}{2}e^t+(-1)^n*\bruch{1}{2}*e^{-t} [/mm]

dazu könnte ich mir vorstellen,
dass da nur noch [mm] \bruch{e^t}{2} [/mm] übrig bleibt für [mm] n\rightarrow\infty [/mm] ?! Eigentlich nicht, denn das ist doch nur eine alternierende Folge die zwischen 2 werten hin und herspringt hmmm. aber weis jetzt auch nicht ob mir das was bringt und bin deshalb auf eure Tips angewiesen.

Danke für die Hilfe und Gruß,
tedd

        
Bezug
Restgliedformel sinh(x): Antwort
Status: (Antwort) fertig Status 
Datum: 10:49 So 10.05.2009
Autor: fencheltee


> Zeigen Sie durch Untersuchung des Restglieds, dass die
> Funktion sinh(x) für alle reellen Zahlen durch dessen Reihe
> dargestellt werden kann.
>  Also die McLaurin Reihe zu sinh(x) lautet
>  
> [mm]f(x)=\summe_{k=0}^{\infty}{\bruch{x^{2m+1}}{(2m+1)!}}[/mm]
>  
> Folgende Restgliedformel habe ich aus meinem mathe-Skript:
>  [mm]\left|R_{n+1}\right| \le \max_{t\in[0;x]} \left|\bruch{x^{n+1}}{(n+1)!}*f^{n+1}(t)\right|[/mm]
>  
> [mm]\left|R_{n+1}\right| \le \bruch{|x|^{n+1}}{(n+1)!}[/mm] *
> [mm]\max_{t\in[0;x]} \left|*f^{n+1}(t)\right|[/mm]
>  
> So und jetzt komme ich schon nicht weiter...
>  Da das x jede reelle Zahl sein kann, kann das t ebenfalls
> jede reelle Zahl sein.
> [mm]f^{n+1}[/mm] ist abwechselnd cosh(x) und sinh(x) die beide
> maximal werden für x [mm]\rightarrow \infty[/mm] also t [mm]\rightarrow \infty[/mm]
> und somit steht in dem Betrag doch [mm]\infty[/mm] oder nicht?
>  
> [mm]\bruch{|x|^{n+1}}{(n+1)!}[/mm] geht für [mm]n\rightarrow \infty[/mm] und [mm]x\in\IR[/mm]
> gegen 0

genau! und dann hab ich mir gedacht, dass [mm] \max_{t\in[0;x]} \left|f^{n+1}(t)\right| [/mm] (abwechselnd cosh(x) und |sinh(x)|, somit beide achsensymmetrisch) ihr maximum haben, wenn auch das t sein maximum hat. somit sah ich die beschränktheit (1 bzw 0 nach unten und f(t) als maximum) in multiplikation der oben genannten Nullfolge, was dann am Ende als Restglied 0 ergeben sollte. ;-)

>  
> [mm]f^{n+1}(t)[/mm] könnte ich doch auch so schreiben oder?
>  
> [mm]f^{n+1}(t)=\bruch{1}{2}e^t+(-1)^n*\bruch{1}{2}*e^{-t}[/mm]
>  
> dazu könnte ich mir vorstellen,
>  dass da nur noch [mm]\bruch{e^t}{2}[/mm] übrig bleibt für
> [mm]n\rightarrow\infty[/mm] ?! Eigentlich nicht, denn das ist doch
> nur eine alternierende Folge die zwischen 2 werten hin und
> herspringt hmmm. aber weis jetzt auch nicht ob mir das was
> bringt und bin deshalb auf eure Tips angewiesen.
>  
> Danke für die Hilfe und Gruß,
>  tedd


Bezug
                
Bezug
Restgliedformel sinh(x): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:55 Mo 11.05.2009
Autor: tedd

Stimmt! Habe heute nochmal nachgefragt und ich war mir nicht sicher, dass man ja das n gegen unendlich laufen lassen muss und das cosh(x) dann als konstant ansieht - also ist der Fehler 0 :-) [ok]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de