www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Sonstiges" - Restklassen
Restklassen < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Restklassen: Aufgabe
Status: (Frage) überfällig Status 
Datum: 17:04 Mi 03.11.2010
Autor: RWBK

Aufgabe
a) Zeige mit Hilfe der Restklassen,dass jede Primzahl p>3 die Darstellung p=6n-1 oder p=6n+1 mit einer geeigneten natürlichen Zahl n besitzt

b) Analog zu a) zeige man, dass jede Primzahl  p>5 die Darstellung p=30n+a mit einer ganzen Zahl n [mm] \ge [/mm] 0 und a [mm] \varepsilon \{1,7,11,13,17,19,23,29\} [/mm] besitzt.

c) Aus b) folgere man, dass sich jede Primzahl p>5 darstellen lässt in der Form
[mm] p=15*(2k+1)\pm [/mm] b  mit b [mm] \varepsilon \{2,4,8,16\} [/mm]






Meine Lösungsansätze

a) p=6n-1 oder p=6n+1

z.B. 17=6*3-1
       29=6*5-1
       31=6*5+1
x=6n+1
x=6n+1

x=6m+5=6*(m+1)-6+5

b) p=30n+a

z.B. 31=30*1+1
      217=30*7+7
      329=30*10+29

x= 30n+a

c) Versteh ich leider nicht wirklich, Außer das ich für b  die Zahlen aus der Klammer einsetzen soll und was hat das mit dem k auf sich??

Ich bin außerdem der Meinung oder eher der Überzeugung das es das bei a und b auch nicht gewesen sein kann.!!

Ich hoffe es kann mir jemand helfen

MFG RWBK

        
Bezug
Restklassen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:47 Do 04.11.2010
Autor: RWBK

Hey Leute hab meine Aufgabe oben noch einmal erweitet und verbessert.
Vielleicht kann mir jemand sagen ob das richtig ist.

MFG
RWBK

Bezug
        
Bezug
Restklassen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:58 Do 04.11.2010
Autor: vwxyz

Zunächst einmal sollst du ja zeigen, dass jede Primzahl p>3 so darstellbar ist. Das heißt einzelne Beispiele reichen nicht als Beweis aus. Überlege dir lieber mal, was du über Restklassen weißt. Es geht ja um die Darstellung als 6n+1 bzw 6n-1. Wenn du dir mal 6n im Modulo 6 ansiehst so ist das ja stehts 0. Und dann siehst du: [mm] 6n-1\equiv-1 [/mm] mod6 und [mm] 6n+1\equiv1 [/mm] mod6. Jetzt überleg mal welche Restklassengruppen es bei Modulo 6 gibt und welche Restklassengruppe niemals eine Primzahl p>3 enthalten kann und warum. Dann müsstest du die a) schon gelöst haben.
Und bei b) wiederfährst du ähnlich.
c) kannst du dann aus a) und b) folgern.

Bezug
        
Bezug
Restklassen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Fr 05.11.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Restklassen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:20 Fr 05.11.2010
Autor: RWBK

Die zusammenhänge sind mir leider immer noch nicht klar.Wüsst jetzt ehrlich gesagt nicth wie ich das weiter beweisen sollte.

MFG RWBK

Bezug
                
Bezug
Restklassen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:32 Fr 05.11.2010
Autor: abakus


> Die zusammenhänge sind mir leider immer noch nicht
> klar.Wüsst jetzt ehrlich gesagt nicth wie ich das weiter
> beweisen sollte.
>  
> MFG RWBK

Hallo,
mit Ausnahme der Primzahlen 2 und 3 sind Primzahlen weder durch 2 noch durch 3 teilbar (dann wären es keine Primzahlen mehr).
Natürliche Zahlen lassen bei Teilung durch 6 entweder den Rest 0 oder den Rest 1 oder den Rest 2 oder ... oder den Rest 5.
Nun sind Zahlen mit dem Rest 0 keine Primzahl (sie sind ja durch 6 teilbar).
Zahlen mit dem Rest 2 oder den Rest 4 bei Teilung durch 6 können auch keine Primzahl sein (Ausnahme: die 2), denn sie sind durch 2 teilbar.
Zahlen mit dem Rest 3 bei Teilung durch 6 sind durch 3 teilbar (also außer 3 selbst auch keine Primzahl.
Primzahlen größer 3 können bei Teilung durch 6 also nur den Rest 1 oder den Rest 5 lassen.
Den Rest 1 oder den Rest 5 bei Teilung durch 6 lassen z.B. die natürlichen Zahlen
1, 5, 7, 11, 13, 17, 19, 23, 25 und 29,
außerdem
31, 35, 37, 41,43, 47, 49, 53, 55 und 59,
außerdem ....
Das sind nun genau die Zahlen, die bei Teilung durch 30 die Reste
1, 5, 7, 11, 13, 17, 19, 23, 25 bzw. 29 lassen.
Gruß Abakus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de