www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Restklassen modulo m
Restklassen modulo m < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Restklassen modulo m: abelsche Gruppe
Status: (Frage) beantwortet Status 
Datum: 12:26 Mo 26.10.2009
Autor: side

Aufgabe
Seien m,n,p [mm] \in \IZ [/mm] mit p Primzahl.
Beh.:
a) [mm] (\IZ/p\IZ\backslash\left[ 0 \right],*) [/mm] ist eine abelsche Gruppe der Ordnung p-1
b) m,n sind genau dann teilerfremd, wenn alle Gruppenhomomorphismen [mm] h:\IZ/n\IZ\rightarrow\IZ/m\IZ [/mm] trivial sind (d.h. das Bild von h ist [mm] \{\left[0\right]\}). [/mm]

zu a) das die Ordnung p-1 ist, ist mir irgendwie klar, obwohl mich das irritiert, dass die [mm] \left[0\right] [/mm] rausgenommen wird. Sind es dann nciht nur noch p-2 Elemente?
tja, und wie zeig ich dass das ganze abelsch ist?
zu b) welche Information hab ich über die Gruppenhomomorphismen? Welche Eigenschaft muss ich benutzen?

        
Bezug
Restklassen modulo m: Antwort
Status: (Antwort) fertig Status 
Datum: 12:44 Mo 26.10.2009
Autor: angela.h.b.


> Seien m,n,p [mm]\in \IZ[/mm] mit p Primzahl.
>  Beh.:
>  a) [mm](\IZ/p\IZ\backslash\left[ 0 \right],*)[/mm] ist eine
> abelsche Gruppe der Ordnung p-1
>  b) m,n sind genau dann teilerfremd, wenn alle
> Gruppenhomomorphismen [mm]h:\IZ/n\IZ\rightarrow\IZ/m\IZ[/mm] trivial
> sind (d.h. das Bild von h ist [mm]\{\left[0\right]\}).[/mm]

>  zu a) das die Ordnung p-1 ist, ist mir irgendwie klar,

Hallo,

das soll Dir aber nicht irgendwie klar sein, sondern sonnenklar.

> obwohl mich das irritiert, dass die [mm]\left[0\right][/mm]
> rausgenommen wird. Sind es dann nciht nur noch p-2
> Elemente?

Zähl die Elemente von [mm] \IZ [/mm]  / [mm] p\IZ [/mm] auf.

Zähl die Elemente von [mm] (\IZ [/mm]  / [mm] p\IZ) [/mm] \ [mm] \{0\} [/mm] auf.

>  tja, und wie zeig ich dass das ganze abelsch ist?

Indem Du vorrechnst, daß für a, [mm] b\in (\IZ [/mm]  / [mm] p\IZ) [/mm] \ [mm] \{0\} [/mm] gilt [mm] a\*b=b*a. [/mm]

(Natürlich darfst Du nicht die anderen Gruppenaxiome vergessen.)

> zu b) welche Information hab ich über die
> Gruppenhomomorphismen?

??? Ömm. Ich kann hier wirklich nur ganz blöd antworten; daß sie ein Gruppenhomomorphismen sind.

"Alle Gruppenhomomorphismen sind trivial" bedeutet dies:

sofern Du einen Homomorphismus zwischen den beiden Gruppen findest, bildet er jedes Element auf das neutrale Element ab.


> Welche Eigenschaft muss ich
> benutzen?

???

Die, daß es ein Gruppenhomomorphismus ist.
Ich weiß ja auch gar nicht, welche Eigenschaften Du so kennst.
Wichtig ist sicher, daß stets das neutrale Element aufs neutrale abgebildet wird.


Erstmal mußt Du Dir klarmachen, daß Du zwei Richtungen beweisen mußt.
Das sind welche?

Für den Bewies ist es vielleicht nützlich, mal die Kontraposition der zu beweisenden Aussage anzuschauen und eventuell lieber diese zu zeigen.


Mir selbst würde es helfen, mal ein Beispiel zu machen.

Du könntest ja mal  3 und 5 nehmen und versuchen, möglichst viele Gruppenhomomorphismen zu basteln.

Dann könntest Du gucken, ob es für 3 und 6 wirklciich einen vom trivialen Homomorphismus verschiedenen gibt.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de