www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Restklassenring
Restklassenring < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Restklassenring: Rechenaufgabe
Status: (Frage) beantwortet Status 
Datum: 21:32 Mi 07.05.2008
Autor: franzigoth1

Aufgabe
Berechnen Sie [mm] 23^{-1} [/mm] in [mm] \IZ_{}/271\IZ_{}. [/mm]

Hi...

Das Thema: "Rechnen mit Kongruenzen" habe ich erst seit kurzem kennengelernt, nun muss ich diese Aufgabe lösen, aber ich weis nicht wie...
Ich habe schon das ganze Internet abgesucht und keine brauchbaren Ideen finden können.... Ich bin am verzweifeln...

Kann mir vielleicht jemand helfen und mir zeigen, wie man so etwas berechnet?

Bitte, Bitte...

        
Bezug
Restklassenring: Antwort
Status: (Antwort) fertig Status 
Datum: 22:07 Mi 07.05.2008
Autor: MathePower

Hallo franzigoth1,

> Berechnen Sie [mm]23^{-1}[/mm] in [mm]\IZ_{}/271\IZ_{}.[/mm]
>  Hi...
>  
> Das Thema: "Rechnen mit Kongruenzen" habe ich erst seit
> kurzem kennengelernt, nun muss ich diese Aufgabe lösen,
> aber ich weis nicht wie...
>  Ich habe schon das ganze Internet abgesucht und keine
> brauchbaren Ideen finden können.... Ich bin am
> verzweifeln...
>  
> Kann mir vielleicht jemand helfen und mir zeigen, wie man
> so etwas berechnet?
>  
> Bitte, Bitte...

Berechne zunächst den größten gemeinsamen Teiler von 23 und 271.

[mm]271 = a_{1}*23+r_{1}[/mm]
[mm] 23 = a_{2}*r_{1} + r_{2}[/mm]
[mm] r_{1}=a_{3}*r_{2}+r_{3}[/mm]
[mm] \dots [/mm]
[mm] r_{n-3}=a_{n-1}*r_{n-2}+r_{n-1}[/mm]
[mm] r_{n-2}=a_{n}*r_{n-1}+r_{n}[/mm]

Der letzte von 0 verschieden Rest, ist nun der ggT dieser beiden Zahlen.

Sei [mm]r_{n-1}[/mm] dieser von 0 verschiedene Rest.

Der ggt läßt sich auch als Vielfachsumme der beiden Zahlen 23 und 271 scheiben.

Um den ggT als Vielfachsumme darzustellen, gehe wie folgt vor:

[mm]r_{n-1}=1*r_{n-3}-a_{n-1}*r_{n-2}[/mm]

Ersetze dann [mm]r_{n-2}=1*r_{n-4}-a_{n-2}*r_{n-3}[/mm]

Dann steht da:

[mm]r_{n-1}=1*r_{n-3}-a_{n-1}*r_{n-2}[/mm]
[mm]=1*r_{n-3}-a_{n-1}*\left(1*r_{n-4}-a_{n-2}*r_{n-3}\right)[/mm]
[mm]=\left(1+a_{n-1}*a_{n-2}\right)*r_{n-3}-a_{n-1}*r_{n-4}[/mm]

Als nächstes wird [mm]r_{n-3}[/mm] ersetzt:

[mm]r_{n-3}=1*r_{n-5}-a_{n-3}*r_{n-4}[/mm]

Das Spielchen geht so weiter bis Du bei den Zahlen 23 und 271 angekommen bist.

Jetzt gilt: ggt(23,271)=a*23+b*271[/mm]

Betrachtest Du das modulo 271, so sollte a das Inverse zu 23 modulo 271 sein.

Gruß
MathePower

Bezug
                
Bezug
Restklassenring: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:15 Mi 07.05.2008
Autor: wauwau

Ich glaube franzigoth1 hat die ursprüngliche Aufgabe nicht verstanden:

[mm] 23^{-1} [/mm] in [mm] \IZ/273\IZ [/mm] zu lösen

finde ein a, sodass es ein b gibt, damit

[mm]23a=273b+1[/mm]  mit a,b [mm] \in \IN [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de