www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maschinenbau" - Resultierende bestimmen
Resultierende bestimmen < Maschinenbau < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maschinenbau"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Resultierende bestimmen: Erklärung
Status: (Frage) beantwortet Status 
Datum: 18:42 Mo 09.08.2010
Autor: Matrix22

Aufgabe
Bestimmen Sie für den belasteten Träger die Resultierende R der Streckenlast q(x) sowie ihre Koordinate XR.

Servus,

ich habe das Bild jetz nicht gepostet aber die Zeichnung kann ich kurz beschreiben;  Links habe ich ein loslager und rechts ein Festlager, die Kurve verläuft von links nach Rechts exponentiell. Die ganze Strecke ist L lang.

Vorgegeben ist: [mm] q(x)=q0(x/L)^2 [/mm]

Die lösung habe ich auch: R=q0(L/3) und XR=3/4L

Meine Frage ist wie fängt man das an zu lösen lese gerade und habe da zwei Formeln über einjen Integrationsweg:


Q(x)= - [mm] \int_{}^{}q(x)dx+C1 [/mm]

M(x)= [mm] \int_{}^{}Q(x)dx+C2 [/mm]

Leider fällt mir jeglicher Ansatz auch durch das viele Lesen gelingt es mir nicht solche Aufgaben zu lösen. Für so eine Aufgabe habe ich 2 minuten Zeit.
Wäre schön wenn mir jemand das Erklären könnte vieleicht noch was drumherum was ich wissen sollte.
Danke

Matrix22




        
Bezug
Resultierende bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:28 Mo 09.08.2010
Autor: Rene

Hallo!

Die Resultierende einer Streckenlast, bekommst du immer über das Integral. Die Resultierende entspricht quasi der Fläche. Also einfach:

[mm] R=\int_0^L{q(x)dx}[/mm]

Einfach deine Streckenlast einsetzen.

[mm] R=\int_0^L{q_0\left(\frac{x}{L}\right)^2 dx}[/mm]

Alles Konstante davor ziehen

[mm]R=\frac{q_0}{L^2}\int_0^L{x^2 dx}[/mm]

Das sollte für die Lösbar sein. Da es sich um ein bestimmtes Integral handelt, hast du keine Integrationkonstante!

[mm]R=\frac{q_0}{L^2}\left[\frac{1}{3}x^3\right]^{L}_0=\frac{q_0\cdot L^3}{3\cdot L^2}=\frac{1}{3}q_0L[/mm]


Die Lage der Resultierenden entspricht der x-Komponente des Flächenschwerpunkts. Allgemein:

[mm]x_s=\frac{1}{A}\int_A{xdA}[/mm]

Wie zuvor bereits erwähnt, entspricht die Resultierende der Fläche. Weiterhin gilt [mm]dA=dx\cdot dy[/mm]. Hierbei ist die Reihenfolge zu beachten. y ist hierbei eine Funktion von x. Genauer y(x)=q(x). Es gilt somit:

[mm]x_R=\frac{1}{R}\int_x{\int_y{x\cdot dy\cdot dx}}=\frac{1}{R}\int_{x_a}^{x_e}{\int_{0}^{q(x)}{x\cdot dy\cdot dx}}=\frac{1}{R}\int_{x_a}^{x_e}{x\int_{0}^{q(x)}{dy\cdot dx}}[/mm]

[mm]x_e,x_a[/mm] entsprechen den Grenzen. Also hier [mm]x_e=L, x_a=0[/mm]. Jetzt brauchst du nur noch einsetzen und ausrechnen.

[mm]x_R=\frac{1}{R}\int_{0}^{L}{x\int_{0}^{q(x)}{dy\cdot dx}}=\frac{1}{R}\int_{0}^{L}{x\left[y\right]_{0}^{q(x)}\cdot dx}}=\frac{1}{R}\int_0^L{x\cdot q(x)\cdot dx}[/mm]
[mm]x_R=\frac{1}{R}\int_0^L{\frac{q_0}{L^2}x^3dx}=\frac{q_0}{L^2\cdot R}\int_0^L{x^3 dx}[/mm]

Einsetzen der Resultierenden liefert.

[mm]x_R=\frac{3q_0}{q_0\cdot L^3}\int_0^L{x^3 dx}=\frac{3}{L^3}\int_0^L{x^3 dx}[/mm]

Jetzt löst du nur noch das bestimmte Integral und bist fertig.

[mm]x_R=\frac{3}{L^3}\left[\frac{1}{4}x^4\right]_0^L=\frac{3}{4}L[/mm]


Mit freundlichem Gruß

René

Bezug
                
Bezug
Resultierende bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:33 Mo 09.08.2010
Autor: Matrix22

Hey Rene vielen Dank für die Anwort klingt und sieht alles sehr Übersichtlich aus.
Vielen dank nochmal für die Ausführlichkeit so verstehe ich das auch.

Danke



Gruss Matrix22

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maschinenbau"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de