www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Reziprozitätsgesetz
Reziprozitätsgesetz < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reziprozitätsgesetz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:47 Mi 09.01.2008
Autor: fabian1983

Aufgabe
Aufgabe 3. F¨ur alle Primzahlen 2 < p < 30 entscheide man, ob 2 ein Quadrat
mod p ist. Gegegebenfalls schreibe man 2 als Quadrat mod p.

Hallo,
bei dieser Aufgabe verstehe ich die Aufgabenstellung nicht wirklich.

Wir haben untersucht ob

[mm] x^2\equiv2 [/mm] mod p ist.

Dabei haben sind wir alle Primzahlen durchgegangen und haben wir herausgefunden, dass [mm] 5^2\equiv2 [/mm] mod 23 und [mm] 3^2\equiv2 [/mm] mod7 ist.

Allerdings bekommen wir nach den Regeln des Reziprozitätsgesetzes überall eine Lösung heraus.

Wäre schön, wenn jemand aus dieser Aufgabe schlau werden würde.
Vielen Dank für Eure Bemühungen
Fabian

        
Bezug
Reziprozitätsgesetz: Antwort
Status: (Antwort) fertig Status 
Datum: 11:57 Mi 09.01.2008
Autor: statler

Mahlzeit!

> Aufgabe 3. F¨ur alle Primzahlen 2 < p < 30 entscheide man,
> ob 2 ein Quadrat
>  mod p ist. Gegegebenfalls schreibe man 2 als Quadrat mod
> p.

>  bei dieser Aufgabe verstehe ich die Aufgabenstellung nicht
> wirklich.
>  
> Wir haben untersucht ob
>  
> [mm]x^2\equiv2[/mm] mod p ist.
>  
> Dabei haben sind wir alle Primzahlen durchgegangen und
> haben wir herausgefunden, dass [mm]5^2\equiv2[/mm] mod 23 und
> [mm]3^2\equiv2[/mm] mod7 ist.

Was ist mit [mm] 6^{2} \equiv [/mm] 2 mod 17?

> Allerdings bekommen wir nach den Regeln des
> Reziprozitätsgesetzes überall eine Lösung heraus.

Das kann gar nicht sein!

> Wäre schön, wenn jemand aus dieser Aufgabe schlau werden
> würde.

Was sagt denn der 2. Ergänzungssatz des Reziprozitätsgesetzes?

Gruß aus HH-Harburg
Dieter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de