www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Reziprozitätsgesetz
Reziprozitätsgesetz < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reziprozitätsgesetz: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 12:22 Sa 07.07.2012
Autor: fagottator

Aufgabe
Seien [mm] $r,s,1_1,...,r_m \in \IZ$ [/mm] ungerade. Dann gelten folgende Kongruenzen $mod 2$:
1) [mm] $\bruch{rs - 1}{2} \equiv \bruch{r-1}{2} [/mm] + [mm] \bruch{s-1}{2}$ [/mm] bzw. [mm] $\bruch{r_1 \cdot r_2 \cdot ... \cdot r_m - 1}{2}$ \equiv \summe_{i=1}^{m} \bruch{r_i - 1}{2} [/mm]
2) [mm] $\bruch{r^2s^2 - 1}{8} \equiv \bruch{r^2-1}{8} [/mm] + [mm] \bruch{s^2-1}{8}$ [/mm] bzw. [mm] $\bruch{r_1^2 \cdot r_2^2 \cdot ... \cdot r_m^2 - 1}{8}$ \equiv \summe_{i=1}^{m} \bruch{r_i^2 - 1}{8} [/mm]

Hallo zusammen,

ich habe in einem Buch den Beweis für das Reziprozitätsgesetz für Jacobi-Symbole nachgeschlagen und dort wird mit den obigen Hilfssätzen gearbeitet. Das diese zur Lösung des Beweises helfen ist mir schon einsichtig, allerdings verstehe ich den im Buch angegebene Beweis für diese Hilfssätze nicht:

1) folgt aus: $(r-1)(s-1) [mm] \equiv [/mm] 0 \ mod \ 4 [mm] \Rightarrow [/mm] rs-1 [mm] \equiv [/mm] (r-1) + (s-1) \ mod \ 4$

2) folgt aus: [mm] $r^2 [/mm] -1 [mm] \equiv s^2-1 \equiv [/mm] 0 \ mod \ 4 [mm] \Rightarrow (r^2 [/mm] - [mm] 1)(s^2 [/mm] - 1) [mm] \equiv [/mm] 0 \ mod \ 16 [mm] \Rightarrow r^2s^2 [/mm] - 1 [mm] \equiv (r^2 [/mm] - 1) + [mm] (s^2 [/mm] - 1) \ mod \ 16$

Kann mir jemand vllt mit einem Ansatz oder so helfen? Ich versteh leider wirklich nicht, wie es zu dem obigen Beweis kommt... *schäm*

LG und schonmal vielen Dank

fagottator

        
Bezug
Reziprozitätsgesetz: Antwort
Status: (Antwort) fertig Status 
Datum: 13:23 Sa 07.07.2012
Autor: Schadowmaster

moin,

Der Beweis ist etwas sehr kurz geraten, ja.
Du kannst das aber sicher ohne größere Probleme selbst kurz beweisen (ist auch gut zum Behalten und fürs Verständnis^^).
Für die Brüche mit $r,s$ solltest du dir $s$ und $r$ jeweils modulo $4$ angucken und dann überprüfen, was modulo 2 mit den Brüchen geschieht.
Da beide ungerade sind gibt es nur je zwei Möglichkeiten, also insgesamt vier Fälle abzuarbeiten.

Für die Summen würde sich eine kleine Induktion nach $m$ anbieten, wobei der Induktionsanfang gerade die erste Gleichung mit $r,s$ ist.

lg

Schadow

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de