www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Ricahrdson-Extrapolation
Ricahrdson-Extrapolation < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ricahrdson-Extrapolation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:13 So 06.01.2013
Autor: Gnocchi

Aufgabe
führen Sie für die summierte Trapezformel [mm] I_T,h [/mm] = [mm] I_T,n [/mm] eine Richardson-Extrapolation mit Schrittweiten [mm] h_1 [/mm] = b-a(d.h. n=1) und [mm] h_2 [/mm] = [mm] \bruch{h_1}{2}(d.h. [/mm] n=2) durch. Welcher Ihnen bekannten Quadraturformel entspricht der dadurch verbesserte Wert?


Ich habe irgendwie keine Ahnung wie ich an die Aufgabe rangehen soll. Habe leider kein beispiel vorliegen und durch googlen auch nichts hilfreiches gefunden.
Zu dem was ich bisher gemacht habe:
Wir haben ja die summierte  Trapezformel:
[mm] I_T,_n(f) [/mm] = h* ( [mm] \bruch{1}{2} f(x_0) [/mm] + [mm] \summe_{j=1}^{n-1} f(x_j) [/mm] + [mm] \bruch{1}{2} f(x_n)) [/mm]
Dort habe ich nun jeweils [mm] h_1 [/mm] und [mm] h_2 [/mm] eingesetzt. Bringt mir das was? bei [mm] h_1 [/mm] hatte ich dann, dass die Summe von 1 bis 0 läuft (da n=1 ist) und hab das dann mit Indexverschiebung wieder gerade gerückt. Also den Term für j=0 abgezogen und in der Summe hnzugefügt.
Zudem haben wir im Skript Formeln:
[mm] I_{h1} \approx I_{exakt} [/mm] + c* [mm] h_1^{p} [/mm]

[mm] I_{h2} \approx I_{exakt} [/mm] + c* [mm] h_2^{p} [/mm]

[mm] I_{exakt} \approx I_{h2} [/mm] + [mm] \bruch{I_{h2} - I_{h1}}{\bruch{h_1}{h_2}^{p} -1} [/mm]

Da weiß ich aber irgendwie nicht mit umzugehen. Wie kommt ich denn auf [mm] h_1 [/mm] und [mm] h_2 [/mm] oder sind das die Sachen, die ich mit der summierten Trapezformel berechnet hab? Zudem bin ich dadurch verwirrt, dass [mm] h_1 [/mm] und [mm] h_2 [/mm] von [mm] I_{exakt} [/mm] abhängig sind...Das bildet für mich so eine Art Teufelskreis

        
Bezug
Ricahrdson-Extrapolation: Antwort
Status: (Antwort) fertig Status 
Datum: 19:47 So 06.01.2013
Autor: Helbig


> führen Sie für die summierte Trapezformel [mm]I_T,h[/mm] = [mm]I_T,n[/mm]
> eine Richardson-Extrapolation mit Schrittweiten [mm]h_1[/mm] =
> b-a(d.h. n=1) und [mm]h_2[/mm] = [mm]\bruch{h_1}{2}(d.h.[/mm] n=2) durch.
> Welcher Ihnen bekannten Quadraturformel entspricht der
> dadurch verbesserte Wert?
>  
> Ich habe irgendwie keine Ahnung wie ich an die Aufgabe
> rangehen soll. Habe leider kein beispiel vorliegen und
> durch googlen auch nichts hilfreiches gefunden.
>  Zu dem was ich bisher gemacht habe:
>  Wir haben ja die summierte  Trapezformel:
>  [mm]I_T,_n(f)[/mm] = h* ( [mm]\bruch{1}{2} f(x_0)[/mm] + [mm]\summe_{j=1}^{n-1} f(x_j)[/mm]
> + [mm]\bruch{1}{2} f(x_n))[/mm]
>  Dort habe ich nun jeweils [mm]h_1[/mm] und
> [mm]h_2[/mm] eingesetzt. Bringt mir das was?

Ja! Das ist schon mal der richtige Ansatz.

> bei [mm]h_1[/mm] hatte ich dann,
> dass die Summe von 1 bis 0 läuft (da n=1 ist) und hab das
> dann mit Indexverschiebung wieder gerade gerückt.

Damit hast Du alles kaputt gemacht. Die Summe ist in diesem Fall leer, also = 0.

>  Also den
> Term für j=0 abgezogen und in der Summe hnzugefügt.
>  Zudem haben wir im Skript Formeln:
>  [mm]I_{h1} \approx I_{exakt}[/mm] + c* [mm]h_1^{p}[/mm]
>  
> [mm]I_{h2} \approx I_{exakt}[/mm] + c* [mm]h_2^{p}[/mm]
>  
> [mm]I_{exakt} \approx I_{h2}[/mm] + [mm]\bruch{I_{h2} - I_{h1}}{\bruch{h_1}{h_2}^{p} -1}[/mm]

Setze die richtigen Formeln für die Näherungen ein und fertig! Dabei ist p=2 zu setzen! Die Trapezregel liefert nämlich für zweimal stetig differenzierbare Integranden ein Näherung zweiter Ordnung.

Gruß,
Wolfgang


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de