www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Prädikatenlogik" - Richtige oder falsche Aussage?
Richtige oder falsche Aussage? < Prädikatenlogik < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Prädikatenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Richtige oder falsche Aussage?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:50 Fr 11.11.2016
Autor: pc_doctor

Aufgabe
Wir betrachten die folgenden Prädikate wahlweise im Bereich der natürlichen Zahlen [mm] \IN, [/mm] der ganzen Zahlen [mm] \IZ [/mm] oder der rationalen Zahlen [mm] \IQ [/mm] :
P(x,y,z) = " x+y=z"

Ist die Aussage richtig oder falsch:

[mm] \forall [/mm] x [mm] \in \IZ [/mm]
[mm] \forall [/mm] z  [mm] \in \IZ [/mm]
[mm] \exists [/mm] y [mm] \in \IZ [/mm] : P(4x,2y,2z)





Hallo,

ich gehe bei solchen Aufgaben immer so vor: Ich gehe davon aus, dass die Aussage immer falsch ist. Dann negiere ich sie, und wenn die Negation richtig ist, ist die ursprüngliche Aussage falsch gewesen. Wenn die Negation falsch ist, ist die ursprüngliche Aussage richtig gewesen.

Also negieren wir diese Aussage: [mm] \forall [/mm] x [mm] \in \IZ [/mm]
[mm] \forall [/mm] z [mm] \in \IZ [/mm]
[mm] \exists [/mm] y [mm] \in \IZ [/mm] P(4x,2y,2z)

Negation: [mm] \exists [/mm] x [mm] \in \IZ [/mm]
[mm] \exists [/mm] z [mm] \in \IZ [/mm]
[mm] \forall [/mm] y [mm] \in \IZ: \neg [/mm] P(4x,2y,2z)

So, und nicht P, also [mm] \neg [/mm] P ist 4x+2y [mm] \not= [/mm] 2z

Also, in der Negation haben wir zwei mal den Existenzquantor, sodass der Beweiser ( Beweiser / Gegenspieler) x und z aussuchen darf, der Gegenspieler darf das y aussuchen ( weil Allquantor)

Ich wähle x = 5 und z = 7 , der Gegenspieler nimmt y = t [mm] \in \IZ [/mm]

so: jetzt:

4*5 + 2t [mm] \not= [/mm] 14
20 + 2t [mm] \not= [/mm] 14
2t [mm] \not= [/mm] -6
t [mm] \not= [/mm] -3

Was bedeutet das nun ? In der negierten Aussage kommt ein t [mm] \not= [/mm] -3 raus.
Das heißt, t ist ungleich -3, also gilt es nicht für alle y ( [mm] \forall [/mm] y), also ist die negierte Aussage falsch, also ist die ursprüngliche Aussage richtig ?

Vielen Dank im Voraus.

        
Bezug
Richtige oder falsche Aussage?: Antwort
Status: (Antwort) fertig Status 
Datum: 16:46 Fr 11.11.2016
Autor: Gonozal_IX

Hiho,

grundsätzlich hast du recht, auch wenn deine Vorgehensweise seltsam ist.

Du hast das "Spiel" bereits richtig beschrieben, das kann man aber auch ohne Negation machen, da steht nämlich:

Für alle x und z existiert ein y, so dass $4x + 2y = 2z$.
Oder anders ausgedrückt: Der Spieler gewinnt, wenn er zu gegebenem x und z immer ein y finden kann, so dass $4x + 2y = 2z$.

Jetzt überlegt man sich durch einfaches umformen, dass der Spieler eben nur $y = z - 2x$ wählen braucht, aber auch eben nur das wählen KANN damit die Gleichung stimmt.

Die Frage ist jetzt also ganz einfach: In welchen Fallen [mm] ($\IN,\IZ,\IQ$) [/mm] kann der Spieler immer y aus dem gewählten Zahlenbereich wählen.

Da [mm] $\IZ$ [/mm] und [mm] $\IQ$ [/mm] unter Multiplikation und Subtraktion abgeschlossen sind, ist das bei den beiden eben immer der Fall.

Einzig [mm] $\IN$ [/mm] macht da Probleme und bedarf einer besonderen Untersuchung :-)

Gruß,
Gono

Bezug
                
Bezug
Richtige oder falsche Aussage?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:42 Fr 11.11.2016
Autor: pc_doctor

Hallo,
vielen lieben Dank für die Antworten, sie waren auf jeden Fall einleuchtend.

Ich habe aber dennoch eine generelle Frage bezüglich solcher Aufgaben: Wenn man sich nicht sicher ist, ob eine Aussage richtig oder falsch ist, wie soll man vorgehen? Soll man dieses "Spiel" durchführen? Wann bietet es sich an, die negierte Aussage zu beachten?

Gilt im Allgemeinen: Wenn die Negation der Aussage RICHTIG ist, kann man dann automatisch schlussfolgern, dass die ursprüngliche Aussage FALSCH ist? Wenn nein, warum ?

Vielen Dank im Voraus

Bezug
                        
Bezug
Richtige oder falsche Aussage?: Antwort
Status: (Antwort) fertig Status 
Datum: 16:56 Sa 12.11.2016
Autor: Omega91

Hallo,

> Hallo,
>  vielen lieben Dank für die Antworten, sie waren auf jeden
> Fall einleuchtend.
>  
> Ich habe aber dennoch eine generelle Frage bezüglich
> solcher Aufgaben: Wenn man sich nicht sicher ist, ob eine
> Aussage richtig oder falsch ist, wie soll man vorgehen?
> Soll man dieses "Spiel" durchführen? Wann bietet es sich
> an, die negierte Aussage zu beachten?

Da gibt es im Prinzip kein *allgemeines* Rezept. 'Einfache Spiele' kann man durchführen, um sich ein gewisses Maß an Intuition zu verschaffen.


>  
> Gilt im Allgemeinen: Wenn die Negation der Aussage RICHTIG
> ist, kann man dann automatisch schlussfolgern, dass die
> ursprüngliche Aussage FALSCH ist? Wenn nein, warum ?



Das lässt sich ganz einfach anhand der Definition beantworten:

Aussage X.

Die Negation [mm] $\neg [/mm] X$ ist jene Aussage, die genau dann WAHR ist wenn X falsch ist und genau dann FALSCH ist, wenn X wahr ist.

>
> Vielen Dank im Voraus


Lg

Bezug
                                
Bezug
Richtige oder falsche Aussage?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:39 Sa 12.11.2016
Autor: pc_doctor

Ja, das hatte ich mir auch gedacht. Danke noch mal für die Antwort.

Bezug
        
Bezug
Richtige oder falsche Aussage?: Antwort
Status: (Antwort) fertig Status 
Datum: 17:03 Fr 11.11.2016
Autor: tobit09

Hallo pc_doctor!


> Ich wähle x = 5 und z = 7 , der Gegenspieler nimmt y = t
> [mm]\in \IZ[/mm]
>  
> so: jetzt:
>  
> 4*5 + 2t [mm]\not=[/mm] 14

Wenn du das zeigen könntest, hättest du die negierte Aussage bewiesen.


> 20 + 2t [mm]\not=[/mm] 14
>  2t [mm]\not=[/mm] -6
>  t [mm]\not=[/mm] -3
>  
> Was bedeutet das nun ?

Tja, der Gegenspieler braucht nur t=-3 zu wählen, um deinen Beweisversuch der negierten Aussage zum Scheitern zu bringen.

Deine Beweisstrategie zum Beweis der negierten Aussage war also nicht erfolgreich.

Daraus lässt sich jedoch nicht schlussfolgern, dass die negierte Aussage falsch ist.
Vielleicht gibt es ja eine andere Beweisstrategie zum Nachweis der negierten Aussage?

Oder vielleicht ist die negierte Aussage wirklich falsch und du kannst wie von Gono vorgeschlagen die "un-negierte" Aussage zeigen?


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Prädikatenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de