www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Richtungsableitung
Richtungsableitung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Richtungsableitung: Wie geht das?
Status: (Frage) beantwortet Status 
Datum: 07:36 So 13.05.2012
Autor: heinze

Aufgabe
Bestimme die Ableitungenan der Stelle [mm] (x_0,y_0) [/mm] In Richtung des Winkels [mm] \alpha [/mm]

1. [mm] f.\IR^2 \to \IR, (x,y)\to x^2y^3, (x_0,y_0)=(1,-2), \alpha=\bruch{\pi}{6} [/mm]

2. f: [mm] \IR^2\{0}\to \IR, (x,y)\to \bruch{8}{x^2+y^2}, (x_0,y_0)=(\wurzel{3},1), \alpha=-\bruch{\pi}{3} [/mm]

Könnt ihr mir erklären wie man diese Ableitungen mit dem Winkel bildet?

Ich bilde mal die Ableitungen und setze den Punkt [mm] (x_0,y_0) [/mm] ein
[mm] f_x(x,y)=2xy^3=-16 [/mm]
[mm] f_y(x,y)=3x^2y^2=12 [/mm]
[mm] f_{xy}=6xy^2=24 [/mm]
[mm] f_{yx}=6xy^2=24 [/mm]
[mm] f_{xx}=2y^3=-16 [/mm]
[mm] f_{yy}=6x^2y=12 [/mm]

Jetzt brauche ich etwas Hilfe!


LG
heinze

        
Bezug
Richtungsableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 07:51 So 13.05.2012
Autor: Richie1401

Der Winkel entspricht ja eine bestimmten Steigung. Diese Steigung kann man als Vektor darstellen. Diesen sollte man normieren und dann kann man ganz normal die Richtungsableitung bestimmen.

Bezug
                
Bezug
Richtungsableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:13 So 13.05.2012
Autor: heinze

Kannst du mir das bitte nochmal erklären? Das habe ich für mein Besiepile nicht so recht verstanden. In Büchern konnte ich bisher kein ähnliches  Beispiel mit Winkel finden.

LG
heinze

Bezug
                        
Bezug
Richtungsableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:18 So 13.05.2012
Autor: fred97

,

Zum Winkel [mm] \alpha [/mm] gehört der Richtungsvektor [mm] (cos(\alpha),sin( \alpha)) [/mm]

FRED

Bezug
                        
Bezug
Richtungsableitung: Skalarprodukt
Status: (Antwort) fertig Status 
Datum: 09:29 So 13.05.2012
Autor: Infinit

... und das Skalarprodukt zwischen dem Gradienten der Funktion und dem Richtungsvektor (bitte normieren) gibt Dir die Ableitung der Funktion in Richtung dieses Vektors.
Viele Grüße,
Infinit


Bezug
                                
Bezug
Richtungsableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:00 So 13.05.2012
Autor: heinze

Wenn ich den Vekor normiere dann muss ich doch den vektor durch seine Länge teilen.

Die Länge des Vektors wäre ja dann [mm] \wurzel{(cos\bruch{\pi}{6})^2+(sin\bruch{\pi}{6})^2} [/mm]

[mm] \vektor{\bruch{1}{cos(\bruch{\pi}{6}} \\ \bruch{1}{sin(\bruch{\pi}{6}}} [/mm]

So und diesen Vektor muss ich nun mit dem Gradienten von f multiplizieren? Und was ist mit dem Punkt [mm] (x_0,y_0)? [/mm] Wir der zum Schluss erst eingesetzt?


LG
heinze

Bezug
                                        
Bezug
Richtungsableitung: Vektorlänge
Status: (Antwort) fertig Status 
Datum: 11:10 So 13.05.2012
Autor: Infinit

Hallo heinze,
ja, ich würde das erst mal allgemein hinschreiben und am Schluss einsetzen. Ein Tipp noch für die Länge des Vektors, es gibt da sowas wie
[mm] \cos^2 x + \sin^2 x = 1 [/mm] :-)
Damit geht dies wohl recht schnell.
Viele Grüße,
Infinit


Bezug
                                                
Bezug
Richtungsableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:39 So 13.05.2012
Autor: heinze

Also bleibt der veltor normiert wieder

[mm] \vektor{cos\bruch{\pi}{6} \\ sin\bruch{\pi}{6}} [/mm]

Und das Skalarprodukt aus Vektor und Gradient der Funktion lautet dann:

[mm] \vektor{2xy^3 \\ 3x^2y^2} \vektor{cos\bruch{\pi}{6} \\ sin\bruch{\pi}{6}}=\vektor{2xy^3*cos\bruch{\pi}{6} \\ 3x^2y^2*sin\bruch{\pi}{6}}= [/mm]
[mm] \vektor{-16*cos\bruch{\pi}{6} \\ 12*sin\bruch{\pi}{6}} [/mm]

Sind das nun die Ableitungen der Funktion an der stelle [mm] (x_0,y_0) [/mm] in die durch [mm] \alpha [/mm] vorgegebene Richtung?

LG
heinze

Bezug
                                                        
Bezug
Richtungsableitung: Skalarprodukt
Status: (Antwort) fertig Status 
Datum: 11:44 So 13.05.2012
Autor: Infinit

Hallo heinze,
das was Du da hingeschrieben hast, ist ein Vektor und kein Skalarprodukt. Beim Skalarprodukt werden die einzelnen Komponenten der Vektoren ausmultipliziert und aufaddiert, sonst wäre es kein Skalar.
Davon abgesehen ist der Weg okay.
Viele Grüße,
Infinit



Bezug
                                                                
Bezug
Richtungsableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:54 So 13.05.2012
Autor: heinze

Dann muss es heißen:

[mm] 2xy^3*cos\bruch{\pi}{6}+3x^2y^2*sin\bruch{\pi}{6}=-16*cos\bruch{\pi}{6}+12*sin\bruch{\pi}{6} [/mm]

kann man das so stehen lassen als Richtungsableitung?Und mehr ist hier nicht zu amchen bei der Aufgabe?

LG
heinze

Bezug
                                                                        
Bezug
Richtungsableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:06 So 13.05.2012
Autor: Diophant

Hallo,

> Dann muss es heißen:
>
> [mm]2xy^3*cos\bruch{\pi}{6}+3x^2y^2*sin\bruch{\pi}{6}=-16*cos\bruch{\pi}{6}+12*sin\bruch{\pi}{6}[/mm]
>
> kann man das so stehen lassen als Richtungsableitung?Und
> mehr ist hier nicht zu amchen bei der Aufgabe?

Im Prinzip ja. Aber ich würde unbedingt die Werte der Winkelfunktionen hinschreiben und mitverrechnen, das gehört schon dazu. :-)


Gruß, Diophant


Bezug
                                                                                
Bezug
Richtungsableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:07 So 13.05.2012
Autor: heinze

Wie meinst du das?
Kannst du mir das nochmal kurz erklären?

LG
heinze

Bezug
                                                                                        
Bezug
Richtungsableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:09 So 13.05.2012
Autor: Diophant

Hallo,

[mm] sin\left(\bruch{\pi}{6}\right)=\bruch{1}{2} [/mm]

[mm] cos\left(\bruch{\pi}{6}\right)=? [/mm]


Gruß, Diophant

Bezug
                                                                                                
Bezug
Richtungsableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:12 So 13.05.2012
Autor: heinze

achso....also ich soll am Ende so ausrechnen, dass ich eine zahl erhalte ohne sin, cos?



LG
heinze

Bezug
                                                                                                        
Bezug
Richtungsableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:28 So 13.05.2012
Autor: Diophant

Hallo,

> achso....also ich soll am Ende so ausrechnen, dass ich eine
> zahl erhalte ohne sin, cos?

ich würde sagen, in diesem Fall schon. Denn beides sind elementare Werte (die man unbedingt kennen sollte ;-) ).


Gruß, Diophant

Bezug
                                                                                                                
Bezug
Richtungsableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:43 So 13.05.2012
Autor: heinze

2. Beispiel:

[mm] \IR^2\{0}\to \IR, (x,y)\to \bruch{8}{x^2+y^2}, (x_0,y_0)=(\wurzel{3},1), \alpha=-\bruch{\pi}{3} [/mm]

Richtungsvektor [mm] -\vektor{cos\bruch{\pi}{3} \\ sin\bruch{\pi}{3}} [/mm]

Dann ist das Skalarprodukt aus Gradient der Funktion und Richtungsvektor:

[mm] -\vektor{\bruch{16x}{(x^2+y^2)^2}\\ \bruch{16y}{(x^2+y^2)^2}}*(-\vektor{cos\bruch{\pi}{3} \\ sin\bruch{\pi}{3}}) [/mm]

[mm] =\bruch{16x*cos\bruch{\pi}{3}}{(x^2+y^2)^2}+ \bruch{16y*sin\bruch{\pi}{3}}{(x^2+y^2)^2} [/mm]

Punkt einsetzen

[mm] =\bruch{16*\wurzel{3}*cos\bruch{\pi}{3}}{16}+\bruch{16*sin\bruch{\pi}{3}}{16} [/mm]

[mm] =\wurzel{3} [/mm]

habe ich mich hier verrechnet ode geht das in Ordnung?

LG
heinze

Bezug
                                                                                                                        
Bezug
Richtungsableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:14 So 13.05.2012
Autor: Diophant

Hallo,

> 2. Beispiel:
>
> [mm]\IR^2\{0}\to \IR, (x,y)\to \bruch{8}{x^2+y^2}, (x_0,y_0)=(\wurzel{3},1), \alpha=-\bruch{\pi}{3}[/mm]
>
> Richtungsvektor [mm]-\vektor{cos\bruch{\pi}{3} \\ sin\bruch{\pi}{3}}[/mm]

nein: das ist flasch, wie kommst du darauf?

> Dann ist das Skalarprodukt aus Gradient der Funktion und
> Richtungsvektor:
>
> [mm]-\vektor{\bruch{16x}{(x^2+y^2)^2}\\ \bruch{16y}{(x^2+y^2)^2}}*(-\vektor{cos\bruch{\pi}{3} \\ sin\bruch{\pi}{3}})[/mm]
>
> [mm]=\bruch{16x*cos\bruch{\pi}{3}}{(x^2+y^2)^2}+ \bruch{16y*sin\bruch{\pi}{3}}{(x^2+y^2)^2}[/mm]
>
> Punkt einsetzen
>
> [mm]=\bruch{16*\wurzel{3}*cos\bruch{\pi}{3}}{16}+\bruch{16*sin\bruch{\pi}{3}}{16}[/mm]
>
> [mm]=\wurzel{3}[/mm]
>
> habe ich mich hier verrechnet ode geht das in Ordnung?

Wie gesagt: der Richtungsvekror ist flsch, daswegen macht der Rest leider auch keine Sinn. Die letzte Gleichheit wäre richtig gewesen, aber ich würde die Winkelfunktionswerte gleich zu Beginn hinschreiben, um mit ihnen zu rechnen.


Gruß, Diophant

Bezug
                                                                                                                                
Bezug
Richtungsableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:52 So 13.05.2012
Autor: heinze

Warum ist der falsch? Ich habe wieder Vektor durch Länge geteilt und da ja wieder [mm] (-cos)^2+(-sin)^2 [/mm] =1  und ich also den vektor durch 1 teilen muss, was ja nichts verändert.

Wie muss es denn richtig lauten?



LG
heinze

Bezug
                                                                                                                                        
Bezug
Richtungsableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:10 So 13.05.2012
Autor: Diophant

Hallo,

cos(-x)=cos(x)

du hast also einen Vorzeichenfehler in der [mm] x_1-Komponente [/mm] deines Richtungsvektors.


Gruß, Diophant

Bezug
                                                                                                                                                
Bezug
Richtungsableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:34 So 13.05.2012
Autor: heinze

Also ist dann richtig:

[mm] \vektor{cos\bruch{\pi}{3} \\ -sin\bruch{\pi}{3}}? [/mm]

Damit kann ich dann weiter rechnen?

LG
heinze

Bezug
                                                                                                                                                        
Bezug
Richtungsableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:43 So 13.05.2012
Autor: MathePower

Hallo heinze,

> Also ist dann richtig:
>  
> [mm]\vektor{cos\bruch{\pi}{3} \\ -sin\bruch{\pi}{3}}?[/mm]
>  
> Damit kann ich dann weiter rechnen?
>  


Ja.


> LG
>  heinze


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de