www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Riemann-Summe für Integralber.
Riemann-Summe für Integralber. < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Riemann-Summe für Integralber.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:24 Fr 07.11.2014
Autor: bquadrat

Aufgabe
Zu berechnen ist das folgende Integral:

[mm] \integral_{0}^{1}{\wurzel{x} dx} [/mm]

Hierbei soll die Berechnung nicht mit Hilfe des Hauptsatzes der Diff.- und Int.rechnung, sondern mit Hilfe von Riemann-Summen erfolgen.
Bilden Sie hierzu für jedes natürliche n eine nicht äquidistante Zerlegung [mm] Z_{n} [/mm] , bei der Sie die Zwischenpunkte [mm] \xi_{n,j} [/mm] so wählen können, dass [mm] \wurzel{\xi_{n,j}}=\bruch{j}{n} [/mm] gilt. Warum genügt die Betrachtung einer einzigen Riemann-Folge?

Mich verwirrt der Doppelindex bei dem [mm] \xi [/mm] ... warum soll man das mit n und j machen? Muss ich eine Doppelreihe berechnen?

Dank im Voraus

[mm] b^{2} [/mm]

        
Bezug
Riemann-Summe für Integralber.: Antwort
Status: (Antwort) fertig Status 
Datum: 09:30 Fr 07.11.2014
Autor: fred97


> Zu berechnen ist das folgende Integral:
>  
> [mm]\integral_{0}^{1}{\wurzel{x} dx}[/mm]
>  
> Hierbei soll die Berechnung nicht mit Hilfe des Hauptsatzes
> der Diff.- und Int.rechnung, sondern mit Hilfe von
> Riemann-Summen erfolgen.
>  Bilden Sie hierzu für jedes natürliche n eine nicht
> äquidistante Zerlegung [mm]Z_{n}[/mm] , bei der Sie die
> Zwischenpunkte [mm]\xi_{n,j}[/mm] so wählen können, dass
> [mm]\wurzel{\xi_{n,j}}=\bruch{j}{n}[/mm] gilt. Warum genügt die
> Betrachtung einer einzigen Riemann-Folge?
>  Mich verwirrt der Doppelindex bei dem [mm]\xi[/mm] ... warum soll
> man das mit n und j machen?


[mm] \xi_{n,j} [/mm] ist der j-te Zwischenpunkt der Zerlegung [mm] Z_n [/mm]



> Muss ich eine Doppelreihe
> berechnen?

Schreib doch mal die zu [mm] Z_n [/mm] gehörige Riemannsumme hin ....

FRED

>  
> Dank im Voraus
>  
> [mm]b^{2}[/mm]  


Bezug
                
Bezug
Riemann-Summe für Integralber.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:24 Fr 07.11.2014
Autor: bquadrat

Ah okay. Ich möchte auf einen Ausdruck:
[mm] \limes_{n\rightarrow\infty}(\summe_{j=1}^{n}(f(\xi_{n,j})(x_{n,j}-x_{n,j-1})))=\limes_{n\rightarrow\infty}(\summe_{j=1}^{n}(\wurzel{\xi_{n,j}}(x_{n,j}-x_{n,j-1}))) [/mm] und hinterher irgendwie dazu kommen, dass [mm] \wurzel{\xi_{n,j}}=\bruch{j}{n} [/mm] gilt. Auf jeden Fall muss gelten: [mm] \xi_{n,j}\in[x_{n,j-1},x_{n,j}] [/mm] und [mm] |Z_{n}| [/mm] muss gegen 0 konvergieren. Und ich habe ehrlich gesagt nicht die leiseste Ahnung, wie ich dieses [mm] Z_{n} [/mm] wählen sollte....

Bezug
                        
Bezug
Riemann-Summe für Integralber.: Antwort
Status: (Antwort) fertig Status 
Datum: 12:17 Fr 07.11.2014
Autor: leduart

Hallo
die Zwischenpunkte. die du [mm] x_i [/mm] nennst sollen doch die [mm] \Xi_{i,n} [/mm] sein! schreib das doch mal für n=2 und 4 auf!
wenn du gewohnt bist die Punkte [mm] x_i [/mm] zu nennen dann schreib einfach  für n=4 etwa [mm] x_i=i^2/4, [/mm]  i =0,1,2,3,4)
und zeichne es für dich mal auf!
Gruß leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de