Riemann-integrierbar < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:03 Fr 12.12.2008 | Autor: | anna88 |
Aufgabe | Beweisen Sie:
a) Die Funktion f: [0,1] [mm] \to \IR, [/mm] wo [mm] f(x)=\begin{cases} \bruch{1}{n}, & \mbox{falls } x= \bruch{m}{n}\in \IQ \cap[0,1]\mbox{ (gekürzt) } \\ 0, & \mbox{falls } x \in \ [0,1] \ \IQ \mbox{} \end{cases}
[/mm]
iat RIEMANN-integrierbar mit [mm] \integral_{0}^{1}{f(x) dx} [/mm] = 0 |
Also hab mir überlegt: die Vorraussetzung für eine Riemann-Integrierbarkeit ist, dass die Ober - und Untersumme gegen den gleichen Wert konvergieren. Also U(Z) = O(Z), also: O(Z) [mm] \* [/mm] inf (f(x)) = U(Z) [mm] \* [/mm] sup (f(x)) = [mm] \integral_{a}^{b}{f(x) dx}.
[/mm]
Zum Infimum gilt: [mm] \forall [/mm] x [mm] \in \IQ \cap [/mm] [0,1]: f(x) = [mm] \bruch{1}{n}. [/mm]
Analog zum Supremum gilt: [mm] \forall [/mm] x [mm] \in [/mm] [0,1] \ [mm] \IQ [/mm] : f(x) = 0
stimmt das soweit?? und wenn ja, wie muss das jetzt weiter gehen??
|
|
|
|
Das Infimum ist in jedem Teilintervall natürlich 0. Das Supremum ist schon etwas schwerer zu bestimmen, da man sich überlegen muss, welche Brüche jeweils in ein Teilintervall fallen. Da muss man sich eine Zerlegung konstruieren, bei der man das im Griff hat.
|
|
|
|