www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Riemannsche Mannigfaltigkeiten
Riemannsche Mannigfaltigkeiten < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Riemannsche Mannigfaltigkeiten: Problem mit Definition
Status: (Frage) beantwortet Status 
Datum: 11:27 Mi 28.05.2008
Autor: Deuterinomium

Aufgabe
Seien M und N Riemannsche Mannigfaltigkeiten versehen mit den diff'baren Strukturen [mm]\{U_{\alpha},X_{\alpha}\}[/mm] bzw. [mm] \{V_{\beta},Y_{\beta} \}[/mm] . Betrachte dann auf dem kartesischen Produkt [mm]MxN[/mm] versehen mit der diff'baren Struktur [mm] \{U_{\alpha}xV_{\beta},Z_{\alpha \beta}=(X_{\alpha},Y_{\beta}) \} [/mm], das Skalarprodukt
[mm]_{(p,q)}=_{p}+_{q}[/mm]
wobei [mm](p,q) \in MxN, u,v \in T_{(p,q)}(MxN)[/mm] und den kanonischen Projektionen [mm] \pi_{1}:MxN \rightarrow M ; \pi_{2}:MxN \rightarrow N [/mm]

Zeigen sie dass hierdurch [MxN] zu einer Riemannschen Mannigfaltigkeit wird.

Hallo zusammen. Ich hab ein Problem mit der Definition und hoffe ihr könnt mir da helfen.

Also nach Definition reicht es zu zeigen, dass das Skalarprodukt symmetrisch, positiv definit (hab ich hinbekommen!) und diff'bar im folgenden Sinne ist:

Ist [mm] Z_{\alpha}:U_{\alpha}\rightarrow M [/mm] eine Koordinatenumgebung von [mm]p[/mm] mit [mm] Z_{\alpha}(x_{1},....,x_{n})=q [/mm] und [mm] (\bruch{\partial}{\partial x_{1}}(q),....,\bruch{\partial}{\partial x_{n}}(q)) [/mm] die zugehörige kanonische Basis in [mm] T_{q}(M) [/mm] so sind
[mm] <\bruch{\partial}{\partial x_{i}}(q),\bruch{\partial}{\partial x_{j}}(q)>_{q} [/mm] diff'bare Funktionen.

Mein Problem ist nun diese Definition: Was ist denn [mm] (\bruch{\partial}{\partial x_{1}}(q),....,\bruch{\partial}{\partial x_{n}}(q)) [/mm] und wie schreibe ich das auf diesen Fall um?

Vielen Dank für eure Hilfe schon mal im Voraus!


        
Bezug
Riemannsche Mannigfaltigkeiten: Antwort
Status: (Antwort) fertig Status 
Datum: 14:44 Do 29.05.2008
Autor: rainerS

Hallo!

> Seien M und N Riemannsche Mannigfaltigkeiten versehen mit
> den diff'baren Strukturen [mm]\{U_{\alpha},X_{\alpha}\}[/mm] bzw.
> [mm]\{V_{\beta},Y_{\beta} \}[/mm] . Betrachte dann auf dem
> kartesischen Produkt [mm]MxN[/mm] versehen mit der diff'baren
> Struktur [mm]\{U_{\alpha}xV_{\beta},Z_{\alpha \beta}=(X_{\alpha},Y_{\beta}) \} [/mm],
> das Skalarprodukt
>  [mm]_{(p,q)}=_{p}+_{q}[/mm]
>  
> wobei [mm](p,q) \in MxN, u,v \in T_{(p,q)}(MxN)[/mm] und den
> kanonischen Projektionen [mm]\pi_{1}:MxN \rightarrow M ; \pi_{2}:MxN \rightarrow N[/mm]
>
> Zeigen sie dass hierdurch [MxN] zu einer Riemannschen
> Mannigfaltigkeit wird.
>  Hallo zusammen. Ich hab ein Problem mit der Definition und
> hoffe ihr könnt mir da helfen.
>  
> Also nach Definition reicht es zu zeigen, dass das
> Skalarprodukt symmetrisch, positiv definit (hab ich
> hinbekommen!) und diff'bar im folgenden Sinne ist:
>  
> Ist [mm]Z_{\alpha}:U_{\alpha}\rightarrow M[/mm] eine
> Koordinatenumgebung von [mm]p[/mm] mit
> [mm]Z_{\alpha}(x_{1},....,x_{n})=q[/mm] und
> [mm](\bruch{\partial}{\partial x_{1}}(q),....,\bruch{\partial}{\partial x_{n}}(q))[/mm]
> die zugehörige kanonische Basis in [mm]T_{q}(M)[/mm] so sind
> [mm]<\bruch{\partial}{\partial x_{i}}(q),\bruch{\partial}{\partial x_{j}}(q)>_{q}[/mm]
> diff'bare Funktionen.
>  
> Mein Problem ist nun diese Definition: Was ist denn
> [mm](\bruch{\partial}{\partial x_{1}}(q),....,\bruch{\partial}{\partial x_{n}}(q))[/mm]
> und wie schreibe ich das auf diesen Fall um?

Du hast doch diese Eigenschaft schon für die beiden Riemannschen Mannigfaltigkeiten M und N. Außerdem hast du die Definition des Skalarprodukt s auf [mm] $M\times [/mm] N$:

[mm]_{(p,q)}=_{p}+_{q}[/mm]

Damit kannst du doch jedes Skalarprodukt auf dem Tangentialraum an [mm] $M\times [/mm] N$ in $(p,q)$ durch die Skalarprodukte auf [mm] $T_p(M)$ [/mm] und [mm]T_{q}(N)[/mm] ausdrücken.

(Das ist auch nichts Anderes als die direkte Summe zweier Vektorräume: der Tangentialraum [mm] $T_{(p,q)}(M\times [/mm] N)$ zerfällt in die einzelnen Tangentialräume. $d [mm] \pi_{1}$ [/mm] und [mm] $d\pi_2$ [/mm] sind die Projektionen von [mm] $T_{(p,q)}(M\times [/mm] N)$ auf [mm] $T_p(M)$ [/mm] und [mm]T_{q}(N)[/mm].)

Also nimmst du jeweils die kanonische Basis von [mm] $T_p(M)$ [/mm] und [mm]T_{q}(N)[/mm], setzt die beiden zusammen und hast eine Basis für [mm] $T_{(p,q)}(M\times [/mm] N)$, woraus die Diff'barkeit des Skalarprodukts folgt.

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de