www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Riemannscher Hebbarkeitssatz 2
Riemannscher Hebbarkeitssatz 2 < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Riemannscher Hebbarkeitssatz 2: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:45 Mi 09.03.2016
Autor: Reynir

Hallo,
angenommen ich habe eine Funktion f, die auf [mm] $D\backslash \{z_0\}$ [/mm] holomorph ist und zudem beschränkt in einer Umgebung von [mm] $U(z_0) \backslash \{z_0\}$ [/mm] weiter definiere man eine Funktion $g(z):= [mm] (z-z_0)f(z)$, [/mm] dann kann man den Satz von Morera anwenden um Holomorphie zu argumentieren. Dazu hatten wir gesagt, dass für jedes Dreieck D in U das Integral [mm] $\int_D [/mm] g(z) dz=0$ ist.
Der Prof hat in etwa gesagt, wenn [mm] $z_0$ [/mm] nicht im Dreieck liegt, dann ist das klar, wegen Holomorphie, aber für den Fall, dass es drinnen ist, hat er gesagt, dass man das Dreieck immer kleiner wählen könne und das dann gegen 0 gehe. Das sehe ich auch soweit alles.
Meine Frage ist jetzt, wieso sind die größeren Dreiecke die [mm] $z_0$ [/mm] enthalten egal?
Viele Grüße,
Reynir

        
Bezug
Riemannscher Hebbarkeitssatz 2: Antwort
Status: (Antwort) fertig Status 
Datum: 17:14 Mi 09.03.2016
Autor: fred97


> Hallo,
>  angenommen ich habe eine Funktion f, die auf [mm]D\backslash \{z_0\}[/mm]
> holomorph ist und zudem beschränkt in einer Umgebung von
> [mm]U(z_0) \backslash \{z_0\}[/mm] weiter definiere man eine
> Funktion [mm]g(z):= (z-z_0)f(z)[/mm], dann kann man den Satz von
> Morera anwenden um Holomorphie zu argumentieren


wozu Morera?  f und auch g lassen sich, nach Riemann, auf D holomorph fortsetzen

Fred



> . Dazu
> hatten wir gesagt, dass für jedes Dreieck D in U das
> Integral [mm]\int_D g(z) dz=0[/mm] ist.
> Der Prof hat in etwa gesagt, wenn [mm]z_0[/mm] nicht im Dreieck
> liegt, dann ist das klar, wegen Holomorphie, aber für den
> Fall, dass es drinnen ist, hat er gesagt, dass man das
> Dreieck immer kleiner wählen könne und das dann gegen 0
> gehe. Das sehe ich auch soweit alles.
>  Meine Frage ist jetzt, wieso sind die größeren Dreiecke
> die [mm]z_0[/mm] enthalten egal?
>  Viele Grüße,
>  Reynir


Bezug
                
Bezug
Riemannscher Hebbarkeitssatz 2: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:38 Mi 09.03.2016
Autor: Reynir

Hi,
das stimmt, wir haben aber Morera benutzt, um genau diese Fortsetzbarkeit zu zeigen, sprich zz., dass g holomoprh.
Viele Grüße,
Reynir

Bezug
                
Bezug
Riemannscher Hebbarkeitssatz 2: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:56 Do 10.03.2016
Autor: Reynir

Hi,
ich habe jetzt eine Variante gesehen, die ohne Morera auskommt, allerdings würde mich doch interessieren, wieso das mit dem Dreieck so argumentiert werden kann. Sollte unklar sein, was genau meine Frage ist, sag es bitte.
Viele Grüße,
Reynir

Bezug
                        
Bezug
Riemannscher Hebbarkeitssatz 2: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:28 So 13.03.2016
Autor: Reynir

Hab's hingekriegt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de