www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maßtheorie" - Ring durch Erzeuger
Ring durch Erzeuger < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ring durch Erzeuger: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:37 Di 23.04.2013
Autor: eddiebingel

Aufgabe
Es sei [mm] \Omega [/mm] eine Menge, [mm] \epsilon \subset \mathcal{P} (\Omega) [/mm] ein Megensystem und [mm] \mathcal{R} [/mm] = [mm] \mathcal{R}(\epsilon) [/mm]  der von [mm] \epsilon [/mm] erzeugte Ring. Definieren Sie iterativ [mm] \epsilon_{0} [/mm] := [mm] \epsilon \cup \{\emptyset\} [/mm] und
[mm] \epsilon_{n} [/mm] := {A \ B, A [mm] \cup [/mm] B : A,B [mm] \in \epsilon_{n-1} [/mm] },  für n [mm] \ge [/mm] 1
Zeigen Sie, dass dann die folgende Identität gilt:
[mm] \mathcal{R} [/mm] = [mm] \bigcup_{n=1}^{\infty} \epsilon_{n} [/mm]
(Sie haben also [mm] \mathcal{R} [/mm] aus [mm] \epsilon [/mm] konstruiert)


Moin zusammen, bei dieser Aufgabe tue ich mich ein bisschen schwer, da mir der Umgang mit den Mengensystemen noch ziemlich schwer fällt.
Wahrscheinlich muss ich bei dieser Aufgabe beide Inklusionen zeigen.

Habe auch angefangen und versucht [mm] "\subset" [/mm] zu zeigen
[mm] \mathcal{R} [/mm] = [mm] \mathcal{R} (\epsilon) [/mm] = [mm] \bigcap_{\mathcal{R} Ring, \epsilon \subset \mathcal{R}}^{} \mathcal{R} [/mm]
Ich weiss auch, dass [mm] \mathcal{R} [/mm] ein Ring ist falls [mm] \mathcal{R} \not= \emptyset [/mm] und für A,B [mm] \in \mathcal{R} [/mm] auch A \ B und A [mm] \cup [/mm] B [mm] \in \mathcal{R} [/mm] gilt.
Das alles sieht ja schon ein bisschen wie unser iterativ konstruiertes Mengensystem aus aber so ganz komm ich nicht drauf wie ich den Beweis schön führen kann.

Hoffe ihr könnt mir helfen
mfg eddie

        
Bezug
Ring durch Erzeuger: Antwort
Status: (Antwort) fertig Status 
Datum: 19:33 Di 23.04.2013
Autor: tobit09

Hallo eddiebingel,


> Es sei [mm]\Omega[/mm] eine Menge, [mm]\epsilon \subset \mathcal{P} (\Omega)[/mm]
> ein Megensystem und [mm]\mathcal{R}[/mm] = [mm]\mathcal{R}(\epsilon)[/mm]  
> der von [mm]\epsilon[/mm] erzeugte Ring. Definieren Sie iterativ
> [mm]\epsilon_{0}[/mm] := [mm]\epsilon \cup \{\emptyset\}[/mm] und
> [mm]\epsilon_{n}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

:= $\{$A \ B, A [mm]\cup[/mm] B : A,B [mm]\in \epsilon_{n-1}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


> $\}$,  für n [mm]\ge[/mm] 1
>  Zeigen Sie, dass dann die folgende Identität gilt:
>  [mm]\mathcal{R}[/mm] = [mm]\bigcup_{n=1}^{\infty} \epsilon_{n}[/mm]
>
>  Wahrscheinlich muss ich bei dieser Aufgabe beide
> Inklusionen zeigen.

Genau.

> Habe auch angefangen und versucht [mm]"\subset"[/mm] zu zeigen
> [mm]\mathcal{R}[/mm] = [mm]\mathcal{R} (\epsilon)[/mm] = [mm]\bigcap_{\mathcal{R} Ring, \epsilon \subset \mathcal{R}}^{} \mathcal{R}[/mm]

Du verwendest hier [mm] $\mathcal{R}$ [/mm] in zweierlei Bedeutungen. Schreibe lieber

     [mm] $\mathcal{R}=\mathcal{R}(\epsilon)=\bigcap_{\substack{\mathcal{T}\text{ Ring}\\\epsilon\subset\mathcal{T}}}\mathcal{T}$. [/mm]

  

> Ich weiss auch, dass [mm]\mathcal{R}[/mm] ein Ring ist falls
> [mm]\mathcal{R} \not= \emptyset[/mm] und für A,B [mm]\in \mathcal{R}[/mm]
> auch A \ B und A [mm]\cup[/mm] B [mm]\in \mathcal{R}[/mm] gilt.
>  Das alles sieht ja schon ein bisschen wie unser iterativ
> konstruiertes Mengensystem aus aber so ganz komm ich nicht
> drauf wie ich den Beweis schön führen kann.

Sei [mm] $\mathcal{S}:=\bigcup_{n=1}^{\infty} \epsilon_{n}$. [/mm]

Für [mm] $\mathcal{R}\subset\mathcal{S}$ [/mm] zeige, dass [mm] $\mathcal{S}$ [/mm] ein Ring ist, der [mm] $\epsilon\subset \mathcal{S}$ [/mm] erfüllt. Ist dir klar, warum das genügt?

Für [mm] $\mathcal{R}\supset\mathcal{S}$ [/mm] zeige induktiv [mm] $\mathcal{R}\supset\epsilon_n$ [/mm] für alle [mm] $n\ge [/mm] 1$ (oder auch [mm] $n\ge [/mm] 0$).


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de