www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Ringe...
Ringe... < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ringe...: Frage
Status: (Frage) beantwortet Status 
Datum: 23:57 Fr 07.01.2005
Autor: squeezer

Hallo

Ich habe folgende Aufgabe zu lösen:
Sei (R, +, *) ein Ring (kommutativ mit 1) mit endlich vielen Elementen. Zeigen Sie, dass jedes Element x  [mm] \in \IR [/mm] entweder ein Nullteiler oder eine Einheit ist.


Ich weiss nicht genau wie Ich das Problem angehen soll. Können Sie mir evtl einen Denkanstoss oder/und einen Lösungsansatz erklären und veranschaulichen.
In der Aufgabe gab es auch noch den Hinweis man solle für ein festes a [mm] \in \IR [/mm] die Abbildung f: [mm] \IR \to \IR [/mm] mit x  [mm] \mapsto [/mm] a*x.
Ich weiss aber nicht genau was ich damit anfangen soll. Was hat es damit genau auf sich.

Danke für Ihre Hilfe

MfG

Marc

        
Bezug
Ringe...: Antwort
Status: (Antwort) fertig Status 
Datum: 00:52 Sa 08.01.2005
Autor: DaMenge

Hi Marc,

zuerst zeigst du einfach, dass ein Elemnt nicht gleichzeitig Nullteiler und Einheit sein kann.Dazu setze ich mal voraus, dass du die Definitionen kennst.
Widerspruchsbeweis:
dann betrachte doch mal x als Nullteiler, also existiert ein y mit: xy=0
dann multipliziere doch mal von links mit dem Inversen von x und klammere das Produkt auf beide unterschiedliche Weisen...

Um als nächstes zu zeigen, dass es keine weiteren Elemente gibt:
(wieder mit Widerspruch, nimm an, es gibt ein Element a, dass kein Nullteiler aber auch keine Einheit ist)

1) nimm die Abbildung deines Hinweises und zeige, dass sie injektiv ist (Nullteilerfreiheit verwenden)

2) Folgere Surjektivität (Endlichkeit)

3)Folgere, dass a ein multiplikatives Inverses hat (und damit den Widerspruch)

hoffe, es hilft dir...
DaMenge

Bezug
                
Bezug
Ringe...: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 19:14 Mi 12.01.2005
Autor: squeezer

Hallo
ich hab jetzt vorausgesetzt das x  [mm] \in [/mm] R und x Nullteiler ist, also wie gesagt
x*y = 0
Muss ich dann schon sagen dass y [mm] \not= [/mm] 0 ist um dann:
x+y=0
[mm] \gdw x^{-1}*x*y=x^{-1}*0 [/mm]
[mm] \gdw [/mm] 1*y=0
y= 0 <-- wäre das jetzt der widerspruch?

Dann zu der Sache mit der Injektivität:
die Funktion ist ja f: R [mm] \to [/mm] R mit x [mm] \mapsto [/mm] ax
Wie soll ich da genau die Injektivität prüfen, und wie kann ich das dann auf die Aufgabe beziehen und wie kann ich dann daraus die Surjektivität herleiten?
Das ganze ist mir irgendwie nicht klar wie ich das angehen soll...

Danke für jede Hilfe

mfg

Marc

Bezug
                        
Bezug
Ringe...: Antwort
Status: (Antwort) fertig Status 
Datum: 19:31 Mi 12.01.2005
Autor: DaMenge

hi,

a war als Nicht-Nullteiler vorrausgesetzt!

injektivtät bedeutet Kern={0} und das kann man dann leicht zeigen, oder?

zur surjektivität: ganz allgemein kann man für eine endliche Menge M und eine selbstabbildung f:M->M zeigen:
f ist injektiv $ [mm] \gdw [/mm] $ f ist surjektiv $ [mm] \gdw [/mm] $ f ist bijektiv
mach dir das mal an einer beliebigen Menge klar, ist nicht so kompliziert, wie es aussieht.

Damit hättest du die bijektivität ! Also - um den letzten Teil zu zeigen : wird auch die 1 getroffen - damit erhält man ein multiplikatives inverses zu a, also ist a eine Einheit...

hilft es jetzt mehr?
viele Grüße
DaMenge

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de