www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Ringe
Ringe < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ringe: Teilmengen
Status: (Frage) beantwortet Status 
Datum: 14:37 Do 20.10.2016
Autor: Franzi17

Aufgabe
Entscheiden Sie, ob die angegebene Teilmenge von Q zusammen mit der üblichen Addition, mit 0 als Nullelement, mit der üblichen Multiplikation und mit 1 als Einselement ein Ring ist. Begründen Sie Ihre Antwort!
(a) {a/5 : a ∈ IZ}
(b) {a/2n : a,n ∈ IZ}

Hallo,
wäre froh über einen Tipp, ist die Herangehensweise in Ordnung oder habe ich einen Fehler gemacht? Danke für die Hilfe!


a.) z.Z. 0, 1 Element von [mm] {\bruch{a}{5} ; a ∈ IZ} [/mm]
  

[mm] \bruch{a}{5} [/mm] = 0
für a = 0, 0  ∈ IZ
--> 0 ∈ [mm] {\bruch{a}{5}; a ∈ IZ} [/mm]

[mm] \bruch{a}{5} [/mm] = 1
für a = 5 , 5 ∈ IZ
--> 5 ∈ [mm] {\bruch{a}{5}; a ∈ IZ} [/mm]

z.Z.: m(a,b) ∈ [mm] {\bruch{a}{5}; a ∈ IZ} [/mm]

additiv: m(a,b) = a + b

[mm] \bruch{a}{5} [/mm] + [mm] \bruch{b}{5} [/mm] = [mm] \bruch{a + b}{5} [/mm] = [mm] \bruch{x}{5} [/mm]

a  +  b sei x, x ∈ IZ, da die Summe zweier ganzer Zahlen eine ganze Zahl ergibt.

multiplikativ: m(a,b) = ab

[mm] \bruch{a}{5} [/mm] * [mm] \bruch{b}{5} [/mm] = [mm] \bruch{ab}{25} [/mm]

multiplikativ m(a,b) nur ∈  [mm] {\bruch{a}{5}; a ∈ IZ}, [/mm] wenn ab durch 5 teilbar ist.

--> kein Ring

Bei b) ergibt sich eine ähnliche Situation.

        
Bezug
Ringe: Antwort
Status: (Antwort) fertig Status 
Datum: 17:06 Do 20.10.2016
Autor: angela.h.b.


> Entscheiden Sie, ob die angegebene Teilmenge von Q zusammen
> mit der üblichen Addition, mit 0 als Nullelement, mit der
> üblichen Multiplikation und mit 1 als Einselement ein Ring
> ist. Begründen Sie Ihre Antwort!
> (a) {a/5 : a ∈ IZ}
> (b) {a/2n : a,n ∈ IZ}
> Hallo,
> wäre froh über einen Tipp, ist die Herangehensweise in
> Ordnung oder habe ich einen Fehler gemacht? Danke für die
> Hilfe!

>
>

> a.) z.Z. 0, 1 Element von [mm]{\bruch{a}{5} ; a ∈ IZ}[/mm]

>
>

> [mm]\bruch{a}{5}[/mm] = 0
> für a = 0, 0 ∈ IZ
> --> 0 ∈ [mm]{\bruch{a}{5}; a ∈ IZ}[/mm]

>

> [mm]\bruch{a}{5}[/mm] = 1
> für a = 5 , 5 ∈ IZ
> --> 5 ∈ [mm]{\bruch{a}{5}; a ∈ IZ}[/mm]

>

> z.Z.: m(a,b) ∈ [mm]{\bruch{a}{5}; a ∈ IZ}[/mm]

>

> additiv: m(a,b) = a + b

>

> [mm]\bruch{a}{5}[/mm] + [mm]\bruch{b}{5}[/mm] = [mm]\bruch{a + b}{5}[/mm] =
> [mm]\bruch{x}{5}[/mm]

>

> a + b sei x, x ∈ IZ, da die Summe zweier ganzer Zahlen
> eine ganze Zahl ergibt.

>

> multiplikativ: m(a,b) = ab

>

> [mm]\bruch{a}{5}[/mm] * [mm]\bruch{b}{5}[/mm] = [mm]\bruch{ab}{25}[/mm]

>

> multiplikativ m(a,b) nur ∈ [mm]{\bruch{a}{5}; a ∈ IZ},[/mm]
> wenn ab durch 5 teilbar ist.

>

> --> kein Ring

Hallo,

Du hast richtig überlegt: es ist kein Ring.

Zum Zeigen dieser Tatsache kannst Du alles Gedöns, was Du auf dem Weg zu dieser Erkenntnis gemacht hast, weglassen, und einfach ein konkretes Zalenbeispiel angeben, an welchem man sieht, daß die Regeln eines Ringes nicht eingehalten werden.
Z.B. so:

Es sind [mm] \bruch{1}{5}, \bruch{3}{5}\in \{a/5 : a \in \IZ\}, [/mm]

jedoch ist [mm] \bruch{1}{5}*\bruch{3}{5}=\bruch{3}{25}=\bruch{0.6}{5}\not\in \{a/5 : a \in \IZ\}. [/mm]
Also ist die Menge kein Ring.

Merke: widerlegen immer mit einem Gegenbeispiel!

>

> Bei b) ergibt sich eine ähnliche Situation.

Ja?
Ich würde denken, daß es ein Ring ist - zumindest, wenn die Menge im Original so ist, daß n=0 ausgeschlossen ist. Sonst ist es ja eh Kokolores.

LG Angela

Bezug
                
Bezug
Ringe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:14 Do 20.10.2016
Autor: Franzi17

Hallo! Danke für die Antwort.
bei b) komme ich bei m(a,b) = ab
auf [mm] \bruch{a}{2^n} [/mm]  * [mm] \bruch{b}{2^n} [/mm] = [mm] \bruch{ab}{4^n} [/mm]
und wäre dann nicht m(a,b) nur Element {a/2n : a,n ∈Z} wenn ab durch 2 teilbar wäre?

Bezug
                        
Bezug
Ringe: Antwort
Status: (Antwort) fertig Status 
Datum: 17:32 Do 20.10.2016
Autor: angela.h.b.


> Hallo! Danke für die Antwort.
> bei b) komme ich bei m(a,b) = ab
> auf [mm]\bruch{a}{2^n}[/mm] * [mm]\bruch{b}{2^n}[/mm] = [mm]\bruch{ab}{4^n}[/mm]
> und wäre dann nicht m(a,b) nur Element {a/2n : a,n ∈Z}
> wenn ab durch 2 teilbar wäre?

Hallo,

oh, die Menge ist wohl ganz anders als von Dir gepostet.
Wohl so: [mm] \{\bruch{a}{2^n}: a,n\in \IZ\} [/mm] ?

Es ist doch

> [mm]\bruch{a}{2^n}[/mm] * [mm]\bruch{b}{2^n}[/mm] = [mm]\bruch{ab}{4^n}[/mm]

[mm] =\bruch{ab}{(2^2)^n}=\bruch{ab}{2^{2n}}. [/mm] Paßt.

Vor allem aber ist

[mm]\bruch{a}{2^n}[/mm] * [mm]\bruch{b}{2^m}[/mm] =[mm]\bruch{ab}{2^{n+m}}[/mm] . Paßt.

LG Angela
 

Bezug
                                
Bezug
Ringe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:50 Do 20.10.2016
Autor: Franzi17

Oh Entschuldigung für den Tippfehler.
Ich stehe grad etwas auf dem Schlauch.
wenn es 2^(2n) ist, wieso ist es dann Element von [mm] a/(2^n)? [/mm]

Bezug
                                        
Bezug
Ringe: Antwort
Status: (Antwort) fertig Status 
Datum: 17:57 Do 20.10.2016
Autor: angela.h.b.


> Oh Entschuldigung für den Tippfehler.
> Ich stehe grad etwas auf dem Schlauch.
> wenn es 2^(2n) ist, wieso ist es dann Element von [mm]a/(2^n)?[/mm]

Es ist Element der Menge [mm] \{\bruch{a}{2^n}:a,n\in \IZ\}, [/mm]
weil in dieser Menge die Brüche sind, deren Zähler irgendeine ganze Zahl und deren Nenner irgendeine Zweierpotenz sind.

LG Angela

Bezug
                                                
Bezug
Ringe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:59 Do 20.10.2016
Autor: Franzi17

Ok, vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de