www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Ringe
Ringe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ringe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:08 So 02.12.2012
Autor: Domi2209

Aufgabe
Entscheiden Sie mit Begründung, welche der folgenden Strukturen Ringe sind:

[mm] a)(Abb(\IR,\IR),+,\circ) [/mm] mit der Komposition [mm] \circ [/mm] von Abbildungen als Multiplikation

Ein Ring ist ja ein halbring mit kommutativer Gruppe bei (R,+) ...

aber wie kann man das denn überhaupt zeigen?

        
Bezug
Ringe: Antwort
Status: (Antwort) fertig Status 
Datum: 17:56 So 02.12.2012
Autor: felixf

Moin!

> Entscheiden Sie mit Begründung, welche der folgenden
> Strukturen Ringe sind:
>
> [mm]a)(Abb(\IR,\IR),+,\circ)[/mm] mit der Komposition [mm]\circ[/mm] von
> Abbildungen als Multiplikation
>
>  Ein Ring ist ja ein halbring mit kommutativer Gruppe bei
> (R,+) ...

Genau.

> aber wie kann man das denn überhaupt zeigen?

Nun: indem du alle Axiome fuer Halbring und fuer kommutative Gruppe nachpruefst.

Fuer kommutative Gruppe $(R, +)$ musst du z.B. zeigen:
* [mm] $Abb(\IR, \IR)$ [/mm] ist bzgl. $+$ abgeschlossen
* $+$ ist assoziativ
* es gibt eine Abbildung [mm] $\IR \to \IR$ [/mm] die bzgl. $+$ das additiv neutrale Element ist
* es gibt zu jeder Abbildung [mm] $\IR \to \IR$ [/mm] eine weitere Abbildung, die bzgl. dem neutralen Element und $+$ ein Inverses ist.

Ist wirklich nicht schwer. Du musst nur mal anfangen das konkret durchgehen.

LG Felix


Bezug
                
Bezug
Ringe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:44 So 02.12.2012
Autor: Domi2209

Das ist bestimmt auch einfach, wenn man weis wovon die rede ist :)

Aber was zum beispiel heißt überhaupt


>   * [mm]Abb(\IR, \IR)[/mm] ist bzgl. [mm]+[/mm] abgeschlossen

?

Bezug
                        
Bezug
Ringe: Antwort
Status: (Antwort) fertig Status 
Datum: 19:55 So 02.12.2012
Autor: schachuzipus

Hallo Domi2209,


> Das ist bestimmt auch einfach, wenn man weis wovon die rede
> ist :)
>  
> Aber was zum beispiel heißt überhaupt
>
>
> >   * [mm]Abb(\IR, \IR)[/mm] ist bzgl. [mm]+[/mm] abgeschlossen

>  
> ?

Na, das heißt, wenn du 2 Elemente aus [mm]\operatorname{Abb}(\IR,\IR)[/mm] her nimmst, sagen wir [mm]f:\IR\to\IR[/mm] und [mm]g:\IR\to\IR[/mm], gefälligst auch die Summe [mm]f+g[/mm] wieder in [mm]\operatorname{Abb}(\IR,\IR)[/mm] ist.

Sprich: die Summe zweier Abbildungen von [mm]\IR\to\IR[/mm] ist wieder eine Abbildung von [mm]\IR\to\IR[/mm]

Wie ist [mm]f+g[/mm] definiert und ist es eine Abbildung von [mm]\IR\to\IR[/mm]?

Gruß

schachuzipus


Bezug
                                
Bezug
Ringe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:00 So 02.12.2012
Autor: Domi2209

Ja aber ist das nicht bei einer addition immer abgeschlossen?

weil wenn f ne Abbildung von [mm] \IR [/mm] ist und g auch, dann ist das bei ner addition ja auch... weil wenn man etwas addiert, dann bleibt das ja in [mm] \IR [/mm] bei der multiplikation wäre das anders...

Aber wie schreibt man denn sowas auf?

Bezug
                                        
Bezug
Ringe: Antwort
Status: (Antwort) fertig Status 
Datum: 20:18 So 02.12.2012
Autor: felixf

Moin!

> Ja aber ist das nicht bei einer addition immer
> abgeschlossen?
>  
> weil wenn f ne Abbildung von [mm]\IR[/mm] ist und g auch, dann ist
> das bei ner addition ja auch... weil wenn man etwas
> addiert, dann bleibt das ja in [mm]\IR[/mm] bei der multiplikation
> wäre das anders...
>  
> Aber wie schreibt man denn sowas auf?

Dazu musst du dir erstmal die Definition der Addition heraussuchen. Vermutlich ist es anhand derer eh sofort klar. Fang doch mal damit an. Wie sieht die Definition denn aus?

LG Felix


Bezug
                                                
Bezug
Ringe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:36 So 02.12.2012
Autor: Domi2209

zwei Zahlen a und b eine neue Zahl a+b zu, die
wir die Summe von a und b nennen. Zusätzlich fordern wir noch, dass es genau eine Zahl c geben soll, für die a+b=c gilt. Addition halt :)

oder was meinst du/sie jetzt?

Bezug
                                                        
Bezug
Ringe: Antwort
Status: (Antwort) fertig Status 
Datum: 21:02 So 02.12.2012
Autor: schachuzipus

Hallo nochmal,


> zwei Zahlen a und b eine neue Zahl a+b zu, die
>  wir die Summe von a und b nennen. Zusätzlich fordern wir
> noch, dass es genau eine Zahl c geben soll, für die a+b=c
> gilt. Addition halt :)
>  
> oder was meinst du/sie jetzt?

Du

Hier addieren wir doch keine Zahlen, sondern Abbildungen/Funktionen (Elemente aus [mm]\operatorname{Abb}(\IR,\IR)[/mm])

Ich wiederhole meine Frage:

Wie ist [mm]f+g[/mm] definiert für [mm]f,g:\IR\to\IR[/mm]?

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de