Ringe, char p, Isomorphien < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 10:43 Mo 21.08.2006 | Autor: | kathrine |
Aufgabe | p Primzahl, R komm. Ring mit Einselt und |R|= [mm] p^2
[/mm]
dann folgt: [mm] R\cong\IZ/p^2\IZ [/mm] oder R Körper oder [mm] R\cong\IZ/p\IZ\otimes\IZ/p\IZ [/mm] oder [mm] R\cong(\IZ/p\IZ)[X]/(X^2) [/mm] |
Hallo (Felix)
ich habe eine Lösung zu dieser Aufgabe mit folgendem Problem:
wir starten mit der abelschen Gruppe (R,+). ist diese zyklisch der Ordnung [mm] p^2, [/mm] dann fertig. ist diese nicht zyklisch, dann betrachten wir den Primkörper [mm] R_{1} [/mm] der char p.
dann können wir sagen [mm] R\cong\ R_{1}[a]\cong\IZ_{p}[a], [/mm] a nicht im Primkörper.
und jetzt der clou: warum folgt dann, dass [mm] R\cong\IZ_{p}[a]\cong\IZ_{p}[X]/(f) [/mm] für ein Polynom f vom grad 2. das kapier' ich gar nicht; danach ist es klar, wie es weitergeht.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:08 Mo 21.08.2006 | Autor: | felixf |
Hallo Kathrine!
> p Primzahl, R komm. Ring mit Einselt und |R|= [mm]p^2[/mm]
> dann folgt: [mm]R\cong\IZ/p^2\IZ[/mm] oder R Körper oder
> [mm]R\cong\IZ/p\IZ\otimes\IZ/p\IZ[/mm] oder
> [mm]R\cong(\IZ/p\IZ)[X]/(X^2)[/mm]
> Hallo (Felix)
> ich habe eine Lösung zu dieser Aufgabe mit folgendem
> Problem:
> wir starten mit der abelschen Gruppe (R,+). ist diese
> zyklisch der Ordnung [mm]p^2,[/mm] dann fertig.
Genau, dann ist $R [mm] \cong \IZ/p^2\IZ$. [/mm] Eigentlich muesste man aber noch begruenden, warum [mm] $1_R$ [/mm] ein Erzeuger der additiven Gruppe ist.
> ist diese nicht
> zyklisch, dann betrachten wir den Primkörper [mm]R_{1}[/mm] der char
> p.
> dann können wir sagen [mm]R\cong\ R_{1}[a]\cong\IZ_{p}[a],[/mm] a
> nicht im Primkörper.
Genau, allein schon wegen Lagrange: Die additive Untergruppe [mm] $\langle R_1, [/mm] a [mm] \rangle$ [/mm] von $R$ ist echt groesser als [mm] $R_1$, [/mm] muss also $R$ sein. Und [mm] $R_1[a]$ [/mm] enthaelt [mm] $\langle R_1, [/mm] a [mm] \rangle$.
[/mm]
> und jetzt der clou: warum folgt dann, dass
> [mm]R\cong\IZ_{p}[a]\cong\IZ_{p}[X]/(f)[/mm] für ein Polynom f vom
> grad 2. das kapier' ich gar nicht; danach ist es klar, wie
> es weitergeht.
Nun, $R = [mm] R_1[a]$ [/mm] ist ja das Bild vom Einsetzungshomomorphismus [mm] $\Phi [/mm] : [mm] \IZ_p[x] \cong R_1[x] \to [/mm] R$, $x [mm] \mapsto [/mm] a$. Also ist nach dem Homomorphiesatz [mm] $\IZ_p[x] [/mm] / [mm] \ker\Phi \cong [/mm] Img [mm] \Phi [/mm] = R$. Nun ist [mm] $\IZ_p$ [/mm] ein Koerper und somit [mm] $\IZ_p[x]$ [/mm] ein Hauptidealbereich, womit [mm] $\ker\Phi [/mm] = (f)$ ist fuer ein normiertes Polynom $f [mm] \in \IZ_p[x]$ [/mm] (der Kern ist nicht-trivial, da $R$ endlich ist: andernfalls waere $R [mm] \cong \IZ_p[x]$ [/mm] unendlich).
Nun ist aber [mm] $p^2 [/mm] = |R| = [mm] |\IZ_p[x]/(f)| [/mm] = [mm] p^{\deg f}$, [/mm] womit [mm] $\deg [/mm] f = 2$ sein muss!
LG Felix
|
|
|
|