www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Naive Mengenlehre" - Ringschluss
Ringschluss < naiv < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Naive Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ringschluss: Überprüfung meines Beweises
Status: (Frage) beantwortet Status 
Datum: 23:24 Mi 16.04.2008
Autor: Syladriel

Aufgabe
Es seien $A,B$ Teilmengen  einer Menge $X$. Man beweise, dass folgende Aussagen äquivalent sind

1. $A [mm] \subset [/mm] B$
2. $A [mm] \cap [/mm] B = A$
3. $A [mm] \cup [/mm] B = B$
4. $A [mm] \cap [/mm] (X [mm] \backslash [/mm] B) = [mm] \emptyset [/mm] $
5. [mm] $(X\backslash [/mm] A) [mm] \cup [/mm] B = X $

Beweis durch Ringschluss:
1 [mm] \gdw [/mm] 2 [mm] \gdw [/mm] 3 [mm] \gdw [/mm] 4 [mm] \gdw [/mm] 5 [mm] \gdw [/mm] 1

1.  §A [mm] \subset [/mm] B [mm] \Rightarrow [/mm] A [mm] \cap [/mm] B = A$
Wenn $A$ eine Teilmenge von $B$ ist, so gilt, dass jedes Element von $A$ auch ein Element von $B$ sein muss. Dementsprechend muss der Schnitt alle Elemente von $A$ enthalten und ist somit gleich $A$.

2. $A [mm] \cap [/mm] B = A [mm] \Rightarrow [/mm] A [mm] \cup [/mm] B = B$
Wenn der Schnitt von $A$ und $B$ gleich $A$ ist, so kann man daraus schließen, dass jedes Element von $A$ auch in $B$ liegt. Dementsprechend ist die Vereinigung der beiden Mengen gleich der Obermenge, d.h. gleich $B$.

3.  $A [mm] \cup [/mm] B = B [mm] \Rightarrow [/mm] A [mm] \cap (X\backslash [/mm] B) = [mm] \emptyset$ [/mm]
Wenn A [mm] \cup [/mm] B = B so liegt jedes Element von A in B. A und B sind Teilmengen von X. X ohne B hat dementsprechend auch kein Element von A. Daraus folgt, dass die beiden Mengen disjunkt sind.

4. $A [mm] \cap (X\backslash [/mm] B) = [mm] \emptyset \Rightarrow (X\backslash [/mm] A) [mm] \cup [/mm] B = X$
A und B sind Teilmengen von X. Wenn X ohne B disjunkt zu A ist, kann man daraus schließen, dass alle Elemente von A in B enthalten sind. Dementsprechend fügt man diese durch die Vereinigung von X ohne A mit B hinzu und erhält wieder X.

5. [mm] $(X\backslash [/mm] A) [mm] \cup [/mm] B = X [mm] \Rightarrow [/mm] A [mm] \subset [/mm] B$
Da die Vereinigung von X ohne A mit B wieder X ergibt. A und B Teilmengen von X sind, müssen alle Elemente von A in B enthalten sein. Also ist A eine Teilmenge von B.
[mm] \Box [/mm]

Kann ich das so beweisen oder befinden sich da Fehler oder Ungenauigkeiten drin. Wie kann ich es besser machen?

        
Bezug
Ringschluss: Antwort
Status: (Antwort) fertig Status 
Datum: 23:44 Mi 16.04.2008
Autor: pelzig


> Es seien [mm]A,B[/mm] Teilmengen  einer Menge [mm]X[/mm]. Man beweise, dass
> folgende Aussagen äquivalent sind
>  
> 1. [mm]A \subset B[/mm]
>  2. [mm]A \cap B = A[/mm]
>  3. [mm]A \cup B = B[/mm]
>  4. [mm]A \cap (X \backslash B) = \emptyset[/mm]
>  
> 5. [mm](X\backslash A) \cup B = X[/mm]
> Beweis durch Ringschluss:
>  1 [mm]\gdw[/mm] 2 [mm]\gdw[/mm] 3 [mm]\gdw[/mm] 4 [mm]\gdw[/mm] 5 [mm]\gdw[/mm] 1

Bei Ringschluss machste ja nur [mm] $\Rightarrow$, [/mm] also schreib nicht [mm] $\gdw$. [/mm]

> 1.  §A [mm]\subset[/mm] B [mm]\Rightarrow[/mm] A [mm]\cap[/mm] B = A$
>  Wenn [mm]A[/mm] eine Teilmenge von [mm]B[/mm] ist, so gilt, dass jedes
> Element von [mm]A[/mm] auch ein Element von [mm]B[/mm] sein muss.
> Dementsprechend muss der Schnitt alle Elemente von [mm]A[/mm]
> enthalten und ist somit gleich [mm]A[/mm].
>  
> 2. [mm]A \cap B = A \Rightarrow A \cup B = B[/mm]
>  Wenn der Schnitt
> von [mm]A[/mm] und [mm]B[/mm] gleich [mm]A[/mm] ist, so kann man daraus schließen,
> dass jedes Element von [mm]A[/mm] auch in [mm]B[/mm] liegt. Dementsprechend
> ist die Vereinigung der beiden Mengen gleich der Obermenge,
> d.h. gleich [mm]B[/mm].
>  
> 3.  [mm]A \cup B = B \Rightarrow A \cap (X\backslash B) = \emptyset[/mm]
>  
> Wenn A [mm]\cup[/mm] B = B so liegt jedes Element von A in B. A und
> B sind Teilmengen von X. X ohne B hat dementsprechend auch
> kein Element von A. Daraus folgt, dass die beiden Mengen
> disjunkt sind.
>  
> 4. [mm]A \cap (X\backslash B) = \emptyset \Rightarrow (X\backslash A) \cup B = X[/mm]
>  
> A und B sind Teilmengen von X. Wenn X ohne B disjunkt zu A
> ist, kann man daraus schließen, dass alle Elemente von A in
> B enthalten sind. Dementsprechend fügt man diese durch die
> Vereinigung von X ohne A mit B hinzu und erhält wieder X.
>  
> 5. [mm](X\backslash A) \cup B = X \Rightarrow A \subset B[/mm]
>  Da
> die Vereinigung von X ohne A mit B wieder X ergibt. A und B
> Teilmengen von X sind, müssen alle Elemente von A in B
> enthalten sein. Also ist A eine Teilmenge von B.
>  [mm]\Box[/mm]
>  
> Kann ich das so beweisen oder befinden sich da Fehler oder
> Ungenauigkeiten drin. Wie kann ich es besser machen?

Die Beweise sind alle richtig, jedoch zwei Anmerkungen.
1) Man sieht dass du verstanden hast warum das alles funktioniert, aber deine Argumente sind im Grunde "der gesunde Menschenverstand". Wenn du es formaler aufschreiben würdest, also nur mit [mm] $\Leftarrow,\Rightarrow,\gdw,\vee,\wedge,\forall,\exists,\in,\cap,\cup,\subset$ [/mm] usw. wäre es mathematisch sauberer, da man dann gezeigt hat, dass es wirklich auch aus den formalen Definitionen folgt.

2) Du willst einen Ringschluss machen. Das ist immer gut, denn so hast du die minimale Anzahl an Implikationen zu zeigen. Aber wenn du dir deine Beweise mal anguckst zeigst du eigentlich in jedem Schritt zunächst [mm] $A\subset [/mm] B$ und dann erst die Behauptung. Ich mein da is nichts gegen einzuwenden, aber lustig ist es irgendwie schon, dann hättest du ja auch gleich schreiben können: "Ich zeige, aus allem folgt (1), und aus (1) folgt alles"

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Naive Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de