www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Finanzmathematik" - Risikoloser Gewinn + Call-Put
Risikoloser Gewinn + Call-Put < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Risikoloser Gewinn + Call-Put: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 10:11 Do 28.04.2011
Autor: medion

Aufgabe
Gegeben sind folgende Produkte [mm] r_{n} [/mm] (mit äquivalenten Wahrscheinlichkeiten für alle vier möglichen Umweltzustände) mit dem jeweiligen Preis [mm] q_{n}: [/mm]

[mm] r_{1} [/mm] = [mm] \vektor{1 \\ 2 \\ 3 \\ 4} [/mm]          

[mm] r_{2} [/mm] = [mm] \vektor{0 \\ 1 \\ 1 \\ 1} [/mm]

[mm] r_{3} [/mm] = [mm] \vektor{0 \\ 0 \\ 1 \\ 1} [/mm]          

[mm] r_{4} [/mm] = [mm] \vektor{0 \\ 0 \\ 0 \\ 1} [/mm]

[mm] q_{1} [/mm] = 2,1
[mm] q_{2} [/mm] = 0,5
[mm] q_{3} [/mm] = 0,4
[mm] q_{4} [/mm] = 0,2

a) Gibt es hier eine Möglichkeit zu einem risikolosen Gewinn?

b) Wie viel würde man für eine Kaufoption auf [mm] r_{1} [/mm] mit einem Ausübungspreis von 2 bezahlen?

c) Wie viel würde man für eine Verkaufsoption auf [mm] r_{1} [/mm] mit einem Ausübungspreis von 3 bezahlen?

Hallo!

Ich habe versucht diese Aufgabe zu lösen und bin mir über meine Resultate nicht sicher und wäre über Tipps oder Anregungen dazu sehr dankbar.

ad a)
also ich kann hier keine Möglichkeit finden, denn wenn man zu t=0 das Produkt [mm] r_{1} [/mm] kauft und aus diesem die Produkte [mm] r_{2}, r_{3} [/mm] und [mm] r_{4} [/mm] "abzweigt" und verkauft so bleibt einem ein verändertes Produkt [mm] r^{*}_{1} [/mm] mit den vier Umweltzuständen [mm] \vektor{1 \\ 1 \\ 1 \\ 1}. [/mm]

Der Cashflow dazu wäre:
t=0: -2,1 + 0,5 + 0,4 + 0,2 = -1
t=1: +1
= 0

Stimmt das so? Was mir auch nicht klar ist: [mm] r_{1} [/mm] stellt sozusagen eine Aktie dar, aber wie kann man die Produkte [mm] r_{2}, r_{3} [/mm] und [mm] r_{4} [/mm] bezeichnen?


ad b)
[mm] E(r_{1}) [/mm] = 1*0,25+2*0,25+3*0,25+4*0,25 = 2,5

2,5 – 2 = 0,5

Das heißt, ich würde maximal 0,5 für eine Kaufoption auf [mm] r_{1} [/mm] bezahlen, die mir das Recht gibt, das Produkt im Zeitpunkt t=1 um 2 zu kaufen. Wenn der Preis allerdings < 2 ist, werde ich die Option nicht ausüben.

ad c)
[mm] E(r_{1}) [/mm] = 2,5

3 – 2,5 = 0,5

Ich würde wieder maximal 0,5 für eine Verkaufsoption auf [mm] r_{1} [/mm] bezahlen, die mir das Recht gibt, das Produkt im Zeitpunkt t=1 um 3 zu verkaufen. Wenn der Preis allerdings > 3 ist, werde ich die Option nicht ausüben.


Wie bereits anfangs erwähnt, bin ich mir über meine Lösungen überhaupt nicht sicher und wäre sehr dankbar wenn mir jemand Tipps geben kann, ob sie richtig sind oder eher nicht.
Ich bedanke mich bereits im Voraus über alle Antworten!

mfg


        
Bezug
Risikoloser Gewinn + Call-Put: Zur a)
Status: (Antwort) fertig Status 
Datum: 15:37 Do 28.04.2011
Autor: barsch

Hallo,

ich finde es bei so Aufgaben immer schwer zu helfen. Was ist denn unter risikolosem Gewinn zu verstehen - Arbitragemöglichkeiten?

Das kannst du über Arrow-Debreu-Preise untersuchen:

Wenn [mm]Z=(r_1,r_2,r_3,r_3)[/mm] deine Zahlungsmatrix, [mm]q=(q_1,q_2,q_3,q_4)^T[/mm] dein Preisvektor und [mm]p=(p_1, p_2,p_3,p_4)[/mm] dein Arrow-Debreu-Preis-Vektor ([mm]p_i[/mm] : Arrow-Debreu-Preis) ist, dann herrscht
Arbitragefreiheit [mm]\gdw Z^Tp=q[/mm] lösbar mit [mm]p\geq{0}[/mm].


Gruß
barsch


Bezug
        
Bezug
Risikoloser Gewinn + Call-Put: Antwort
Status: (Antwort) fertig Status 
Datum: 13:00 Fr 29.04.2011
Autor: Blech

Hi,

was sind Deine Kenntnisse zum Thema? Ohne Hilfsmittel ist das ziemlich umständlich. Deine Rechnung in a) stimmt zwar, aber folgt daraus nicht zwangsläufig, daß der Markt arbitragefrei ist. Mit dem risikoneutralen Maß wäre das alles viel leichter.

> $ [mm] r_{1} [/mm] $ stellt sozusagen eine Aktie dar, aber wie kann man die Produkte $ [mm] r_{2}, r_{3} [/mm] $ und $ [mm] r_{4} [/mm] $ bezeichnen?

Z.B. Derivate. Hier sind es aber einfach die underlyings des Marktes. Die Auszahlungsfunktionen wurden nur so gewählt, um die Rechnungen einfacher zu machen.



b)

Die Auszahlung ist

[mm] $r_b=\vektor{0\\0\\1\\2}$ [/mm]

In Zuständen 1 und 2 üben wir nicht aus. In 3 und 4 kriegen wir den Preis von [mm] $r_1$ [/mm] minus dem Ausübungspreis 2.

> Das heißt, ich würde maximal 0,5 für eine Kaufoption auf $ [mm] r_{1} [/mm] $ bezahlen, die mir das Recht gibt, das Produkt im Zeitpunkt t=1 um 2 zu kaufen.

Wenn Du denkst, daß das der faire Preis ist, dann mußt Du bereit sein, auch zu diesem Preis zu verkaufen.

Ich kauf mir 1 von Deinen Optionen zu Preis 0.5 und verkauf je 1 [mm] $r_3$ [/mm] und [mm] $r_4$ [/mm] für zusammen 0.6. Deine Option deckt genau, was ich durch den Verkauf aufgebe

(Auszahlung: [mm] $r_3+r_4=\vektor{0\\0\\1\\2}$) [/mm]

und ich streiche einen risikolosen Gewinn von 0.1 ein.

Das wiederhol ich jetzt 10 Millionen mal und bin Millionär, war nicht so schwär. =)


Der faire Preis einer Option ist genau, was es kostet, ihre Auszahlungsfunktion durch ein Portfolio von underlyings zu replizieren. (hier ist das entsprechende Portfolio je 1 [mm] $r_3$ [/mm] und 1 [mm] $r_4$.) [/mm] Einfacher geht es auch hier wieder mit dem risikoneutralen Maß.


c)

wie sieht die Auszahlungsfunktion dieser Option aus und mit welchem Portfolio kriegt man die gleiche Auszahlung?

ciao
Stefan

Bezug
                
Bezug
Risikoloser Gewinn + Call-Put: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:42 Fr 29.04.2011
Autor: medion


> Hi,
>  
> was sind Deine Kenntnisse zum Thema? Ohne Hilfsmittel ist
> das ziemlich umständlich. Deine Rechnung in a) stimmt
> zwar, aber folgt daraus nicht zwangsläufig, daß der Markt
> arbitragefrei ist. Mit dem risikoneutralen Maß wäre das
> alles viel leichter.


Hallo!

Also in der Lehrveranstaltung haben wir so ein ähnliches Beispiel durchgemacht und da haben wir - so wie ich auch in meinem Lösungsversuch - ein Portfolio mittels anderer repliziert und einfach geschaut, ob diese dann auch das selbe kosten würden. dh eine Berechnung mit dem risikoneutralen Maß ist mir in diesem Zusammenhang bisher unbekannt. Wie sieht das dann aus?


> b)
>  
> Die Auszahlung ist
>  
> [mm]r_b=\vektor{0\\0\\1\\2}[/mm]
>  
> In Zuständen 1 und 2 üben wir nicht aus. In 3 und 4
> kriegen wir den Preis von [mm]r_1[/mm] minus dem Ausübungspreis 2.
>  
> Der faire Preis einer Option ist genau, was es kostet, ihre
> Auszahlungsfunktion durch ein Portfolio von underlyings zu
> replizieren. (hier ist das entsprechende Portfolio je 1 [mm]r_3[/mm]
> und 1 [mm]r_4[/mm].) Einfacher geht es auch hier wieder mit dem
> risikoneutralen Maß.


Ok, verstehe was Du meinst. Dh, der Preis für die Call-Option wäre in diesem Falle 0.6, oder?


> c)
>  
> wie sieht die Auszahlungsfunktion dieser Option aus und mit
> welchem Portfolio kriegt man die gleiche Auszahlung?

  

Also hier würde ich in den Zuständen 1 und 2 zu einem Preis von 3 verkaufen und in den Zuständen 3 und 4 würde ich die Option nicht ausüben.

Die Auszahlungsfunktion sieht demnach so aus:

[mm] r_{c}=\vektor{2\\1\\0\\0} [/mm]

Diese zu replizieren würde bedeuten, 2 mal [mm] r_{1} [/mm] zu kaufen und davon 3 mal [mm] r_{2}, [/mm] 3 mal [mm] r_{3} [/mm] und 5 mal [mm] r_{4} [/mm] zu verkaufen:
-2*2,1 + 3*0,5 + 3*0,4 + 5*0,2 = -0,5

Dh für eine Put-Option mit einem Strike-Preis von 3 würde ich 0.5 bezahlen. Stimmt das?

Danke für Deine großartige Hilfe!!

mfg


Bezug
                        
Bezug
Risikoloser Gewinn + Call-Put: Antwort
Status: (Antwort) fertig Status 
Datum: 17:19 Fr 29.04.2011
Autor: Blech

Hi,

> k, verstehe was Du meinst. Dh, der Preis für die Call-Option wäre in diesem Falle 0.6, oder?

Yep. Folgt aus Arbitragefreiheit des zugrundeliegenden Marktes. Wäre der Preis was anderes könntest Du aus der Differenz der Preise für Option und replizierendem Portfolio immer einen Gewinn einstreichen.


> Die Auszahlungsfunktion sieht demnach so aus:

> $ [mm] r_{c}=\vektor{2\\1\\0\\0} [/mm] $

Das stimmt.

> Diese zu replizieren würde bedeuten, 2 mal $ [mm] r_{1} [/mm] $ zu kaufen und davon 3 mal $ [mm] r_{2}, [/mm] $ 3 mal $ [mm] r_{3} [/mm] $ und 5 mal $ [mm] r_{4} [/mm] $ zu verkaufen:

Das nicht ganz. Wenn Du die zusammenzählst, siehst Du, daß Du [mm] $r_4$ [/mm] zu oft verkauft hast. 3+3+5=11.

Sonst stimmt die Rechnung aber. Wenn Du das noch korrigierst, kommt auch der richtige Preis raus.



Btw. Deine ursprüngliche Idee mit dem Erwartungswert ist sehr elegant und man will es gerne so machen. Das risikoneutrale Maß, das ich 2mal erwähnt habe, tut jetzt so als wären die Wahrscheinlichkeiten für die Endzustände anders (hier 0.5, 0.1, 0.2, 0.2 anstatt wie in der Realität 0.25 für alle). Diese Wahrscheinlichkeiten werden genau so gewählt, daß Deine Rechnung in dieser alternativen Realität funktioniert (indem man dafür sorgt, daß alle securities in dem Markt einen erwarteten cash-flow von 0 haben, d.h. ihr Preis genau ihrem erwarteten return entspricht. Deswegen risikoneutrales Maß, denn in dieser Realität wird man für das Risiko nicht entschädigt).


> Danke für Deine großartige Hilfe!!

Gerne, gerne =)

ciao
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de