www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Rotation
Rotation < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rotation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:05 Di 08.11.2011
Autor: Kuriger

Hallo


Gegeben ist die Funktion f(x) = [mm] e^{-kx} [/mm] k > 0

Die Fläche im 1. Quadranten zwischen Kurve und Koordinatenachsen rotieren um die x-Achse wobei ein Rotationskörper R mit Volumen VR entsteht.

Drücke das Volumen VR in Abhängigkeit von k aus. Welche speziellen Werte hat k, wenn das Volumen [mm] \pi [/mm] Volumeneinheiten beträgt?

Also eine E Funktion nähert sich der x Achse an, aber wird sie nie berühren....

V = [mm] \pi [/mm] * [mm] \integral_{0}^{\infty}{e^{-2kx}} [/mm] dx
[mm] \infty [/mm] = b

f(x) = [mm] e^{-kx} [/mm]
F(x) = [mm] \bruch{1}{k} [/mm] * [mm] e^{-kx} [/mm]
V  = [mm] \pi [/mm] * [mm] \bruch{1}{k} [/mm] * [mm] (e^{-bx} [/mm] -1)


[mm] e^{-bx} [/mm] --> geht gegen null

V  = [mm] \pi [/mm] * [mm] \bruch{1}{k} [/mm] * -1

Stimmt leider nicht

Vr = [mm] \bruch{\pi}{2k} [/mm] gemäss Lösungsresultat




        
Bezug
Rotation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:11 Di 08.11.2011
Autor: Kuriger

Weitere Teilaufgabe dazu

Die Tangente an die Kurve y = [mm] -e^{-kx} [/mm] (k >) bei x = 0 schliesst mit den Koordinatenachsen im 1. Quadranten ein Dreieck ein. Bei Rotation der Dreiecksfläche um die x Achse entsteht ein Kegel mit Volumen Vk.
berechne das Verhältnis VK: VR (VR siehe obere AUfgabe)


y' = [mm] k*e^{-kx} [/mm]
x = 0
m = k (Steigung der Hypotenuse dieses Dreiecks)

Weiter komme ich leie rnicht

Sollte geben: VK:VR = 2:3

Bezug
                
Bezug
Rotation: Antwort
Status: (Antwort) fertig Status 
Datum: 17:44 Di 08.11.2011
Autor: MathePower

Hallo Kuriger,

> Weitere Teilaufgabe dazu
>  
> Die Tangente an die Kurve y = [mm]-e^{-kx}[/mm] (k >) bei x = 0
> schliesst mit den Koordinatenachsen im 1. Quadranten ein
> Dreieck ein. Bei Rotation der Dreiecksfläche um die x
> Achse entsteht ein Kegel mit Volumen Vk.
>  berechne das Verhältnis VK: VR (VR siehe obere AUfgabe)
>  
>
> y' = [mm]k*e^{-kx}[/mm]
>  x = 0
>  m = k (Steigung der Hypotenuse dieses Dreiecks)
>  


Für die Tangentengleichung setze so an:

[mm]y\left(0\right)=m*x+b[/mm]
[mm]y'\left(0\right)=m[/mm]

Löse dann dieses Geichungssystem
und Du erhältst die Werte für m und b.


> Weiter komme ich leie rnicht
>  
> Sollte geben: VK:VR = 2:3


Gruss
MathePower

Bezug
                        
Bezug
Rotation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:48 Di 08.11.2011
Autor: Kuriger

Hallo

Und dann einfach von der erhaltene geradenfunktion die Rotationsformel um die x Achse anwenden?

Gruss Kuriger

Bezug
                                
Bezug
Rotation: Antwort
Status: (Antwort) fertig Status 
Datum: 21:04 Di 08.11.2011
Autor: MathePower

Hallo Kuriger,

> Hallo
>  
> Und dann einfach von der erhaltene geradenfunktion die
> Rotationsformel um die x Achse anwenden?
>


Zuerst musst Du die Schnittpunkte dieser Tangentengleichung
mit den Koordinatenachsen bestimmen. Dann kannst Du die
Rotationsformel um die x-Achse anwenden.


> Gruss Kuriger


Gruss
MathePower

Bezug
        
Bezug
Rotation: Antwort
Status: (Antwort) fertig Status 
Datum: 16:15 Di 08.11.2011
Autor: schachuzipus

Hallo Kuriger,


> Hallo
>  
>
> Gegeben ist die Funktion f(x) = [mm]e^{-kx}[/mm] k > 0
>  
> Die Fläche im 1. Quadranten zwischen Kurve und
> Koordinatenachsen rotieren um die x-Achse wobei ein
> Rotationskörper R mit Volumen VR entsteht.
>  
> Drücke das Volumen VR in Abhängigkeit von k aus. Welche
> speziellen Werte hat k, wenn das Volumen [mm]\pi[/mm]
> Volumeneinheiten beträgt?
>  
> Also eine E Funktion nähert sich der x Achse an, aber wird
> sie nie berühren....
>  
> V = [mm]\pi[/mm] * [mm]\integral_{0}^{\infty}{e^{-2kx}}[/mm] dx [ok]
>  [mm]\infty[/mm] = b

Oha, das kannst du so nicht schreiben!

Es ist [mm]V_k=\pi\cdot{}\lim\limits_{b\to\infty}\int\limits_{0}^{b}{e^{-2kx} \ dx}[/mm]

>  
> f(x) = [mm]e^{-kx}[/mm]

??

Du integrierst doch [mm]f^2(x)=e^{-2kx}[/mm]

Das gibt [mm]-\frac{1}{2k}e^{-2kx}[/mm] --> Probe durch Ableiten ...

>  F(x) = [mm]\bruch{1}{k}[/mm] * [mm]e^{-kx}[/mm]
>  V  = [mm]\pi[/mm] * [mm]\bruch{1}{k}[/mm] * [mm](e^{-bx}[/mm] -1)
>  
>
> [mm]e^{-bx}[/mm] --> geht gegen null
>  
> V  = [mm]\pi[/mm] * [mm]\bruch{1}{k}[/mm] * -1
>  
> Stimmt leider nicht

Nun, du erhältst: [mm]V_k=-\frac{1}{2k}\cdot{}\pi\cdot{}\lim\limits_{b\to\infty}\left[e^{-2kx}\right]_{x=0}^{x=b}[/mm]

Das rechne nochmal aus ...

Dann kannst du auch leicht dasjenige [mm]k[/mm] ausrechnen, für das [mm]V_k=\pi[/mm] ist ...

>  
> Vr = [mm]\bruch{\pi}{2k}[/mm] gemäss Lösungsresultat

Was soll [mm]Vr[/mm] sein?? Der Ausdruck [mm]\frac{\pi}{2k}[/mm] ist doch gar nicht von r abhängig ...

Du solltest wahrlich konsistenter aufschreiben ...


Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de