www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Rotation: 45° im Uhrzeigersinn
Rotation: 45° im Uhrzeigersinn < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rotation: 45° im Uhrzeigersinn: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 12:41 So 07.01.2007
Autor: progmaker

Aufgabe
Gegeben sei das Dreieck mit den Eckpunkten [mm] P_{1}=(2;1), P_{2}=(4;3), P_{3}=(0;2). [/mm] Das Dreieck soll um den Winkel [mm] \alpha=45° [/mm] im Uhrzeigersinn gedreht werden.

a) Verwenden Sie homogene Koordinaten und ermitteln Sie die Abbildungsmatrix!
b) Wie lauten die Eckpunkte des Dreiecks nach der Ausführung der Abbildung?

Hab Probleme mit der Teilaufgabe a).

Die Rotationsmatrix lautet ja [mm] \pmat{ cos(\alpha) & -sin(\alpha) \\ sin(\alpha) & cos(\alpha) }. [/mm] Da wir in unserem Falle aber homogene Koordinaten verwenden sollen, dachte ich, dass die Matrix folgendermaßen aussieht: [mm] \pmat{ \bruch{\wurzel{2}}{2} & \bruch{\wurzel{2}}{2} & 0 \\ -\bruch{\wurzel{2}}{2} & \bruch{\wurzel{2}}{2} & 0 \\ 0 & 0 & 1 } [/mm]

Stimmt aber nicht, denn die Antwort lautet [mm] \pmat{ \bruch{\wurzel{2}}{2} & \bruch{\wurzel{2}}{2} & -\wurzel{2} \\ -\bruch{\wurzel{2}}{2} & \bruch{\wurzel{2}}{2} & 2-\wurzel{2} \\ 0 & 0 & 1 } [/mm]

Warum? Wo kommen die [mm] -\wurzel{2} [/mm] und [mm] 2-\wurzel{2} [/mm] her?

b) ist einfach. Da muss man einfach die Matrix mit den Vektoren multiplizieren.

Hab diese Frage in keinem anderen Forum gestellt.

        
Bezug
Rotation: 45° im Uhrzeigersinn: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:03 So 07.01.2007
Autor: Bastiane

Hallo progmaker!

> Gegeben sei das Dreieck mit den Eckpunkten [mm]P_{1}=(2;1), P_{2}=(4;3), P_{3}=(0;2).[/mm]
> Das Dreieck soll um den Winkel [mm]\alpha=45°[/mm] im Uhrzeigersinn
> gedreht werden.
>  
> a) Verwenden Sie homogene Koordinaten und ermitteln Sie die
> Abbildungsmatrix!
>  b) Wie lauten die Eckpunkte des Dreiecks nach der
> Ausführung der Abbildung?
>  Hab Probleme mit der Teilaufgabe a).
>  
> Die Rotationsmatrix lautet ja [mm]\pmat{ cos(\alpha) & -sin(\alpha) \\ sin(\alpha) & cos(\alpha) }.[/mm]
> Da wir in unserem Falle aber homogene Koordinaten verwenden
> sollen, dachte ich, dass die Matrix folgendermaßen
> aussieht: [mm]\pmat{ \bruch{\wurzel{2}}{2} & \bruch{\wurzel{2}}{2} & 0 \\ -\bruch{\wurzel{2}}{2} & \bruch{\wurzel{2}}{2} & 0 \\ 0 & 0 & 1 }[/mm]
>  
> Stimmt aber nicht, denn die Antwort lautet [mm]\pmat{ \bruch{\wurzel{2}}{2} & \bruch{\wurzel{2}}{2} & -\wurzel{2} \\ -\bruch{\wurzel{2}}{2} & \bruch{\wurzel{2}}{2} & 2-\wurzel{2} \\ 0 & 0 & 1 }[/mm]
>  
> Warum? Wo kommen die [mm]-\wurzel{2}[/mm] und [mm]2-\wurzel{2}[/mm] her?

Leider kann ich dir nicht helfen, aber da mich die Aufgabe interessiert, schreibe ich mal: was sind denn homogene Koordinaten? Und wieso ist die Matrix dreidimensional, die Punkte sind doch alle in 2D?

Viele Grüße
Bastiane
[cap]

Bezug
                
Bezug
Rotation: 45° im Uhrzeigersinn: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:49 Mo 08.01.2007
Autor: progmaker

[]Guckst du!

Bezug
        
Bezug
Rotation: 45° im Uhrzeigersinn: Antwort
Status: (Antwort) fertig Status 
Datum: 10:27 Mo 08.01.2007
Autor: Martin243

Hallo,

wenn das tatsächlich die Musterlösung darstellt, dann wurde aber etwas in der Aufgabenstellung unterschlagen:
Deine Lösung ist intuitiv richtig, weil du das Dreieck um den Ursprung des Koordinatensystems drehst. Die von dir angegebene "richtige" Matrix bewirkt eine Drehung um den Punkt [mm] $P_3$, [/mm] warum auch immer... Somit kommt hier noch eine Verschiebung ins Spiel, in homogenen Koordinaten ist die letzte Spalte also nicht Null.


Gruß
Martin

Bezug
                
Bezug
Rotation: 45° im Uhrzeigersinn: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:33 Mo 08.01.2007
Autor: progmaker

Sowas habe ich mir auch schon gedacht. Ich werd mal versuchen, es rauszufinden.

Bezug
                
Bezug
Rotation: 45° im Uhrzeigersinn: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:43 Di 09.01.2007
Autor: progmaker

Es soll um [mm] P_{3} [/mm] gedreht werden. Ich hab's überlesen...

Bezug
                        
Bezug
Rotation: 45° im Uhrzeigersinn: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:55 Di 09.01.2007
Autor: Martin243

[happy]


Gruß
Martin

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de