Rotation, Divergenz < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Für eine laminare Rohrströmung (zähe Flüssigkeit wird durch ein zur y-Achse koaxiales Rohr, also [mm] x^{2}+y^{2} \le r^{2} [/mm] mit Radius r mit geringer Geschwindigkeit gepresst) gilt:
[mm] \overrightarrow{v}(x,y,z) [/mm] = c * [mm] \vektor{0 \\ x^{2}-y^{2} - z^{2} \\ 0} [/mm] mit c > 0
Zusatz:
Angenommen diese Rohrströmung klingt für y > 1 in y -Richtung durch Reibung gemäß [mm] \overrightarrow{v_{2}}= \bruch{\overrightarrow{v}}{y} [/mm] ab. Berechnen Sie für y > 1 die Volumenverzerrung und die Rotation von [mm] \overrightarrow{v_{2}}. [/mm] |
Wir haben im Tutorium den ersten Teil gerechnet und den Zuatz haben wir jetzt auf.
Ich weiß nicht so recht, was der Zusatz mathematisch bedeutet und somit habe ich keinen Ansatz für die Lösung. Kann mir jemand den mathematischen zusammenhang erklären bitte?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:46 Di 13.12.2011 | Autor: | fred97 |
> Für eine laminare Rohrströmung (zähe Flüssigkeit wird
> durch ein zur y-Achse koaxiales Rohr, also [mm]x^{2}+y^{2} \le r^{2}[/mm]
> mit Radius r mit geringer Geschwindigkeit gepresst) gilt:
>
> [mm]\overrightarrow{v}(x,y,z)[/mm] = c * [mm]\vektor{0 \\ x^{2}-y^{2} - z^{2} \\ 0}[/mm]
> mit c > 0
>
> Zusatz:
>
> Angenommen diese Rohrströmung klingt für y > 1 in y
> -Richtung durch Reibung gemäß [mm]\overrightarrow{v_{2}}= \bruch{\overrightarrow{v}}{y}[/mm]
> ab. Berechnen Sie für y > 1 die Volumenverzerrung und die
> Rotation von [mm]\overrightarrow{v_{2}}.[/mm]
> Wir haben im Tutorium den ersten Teil gerechnet und den
> Zuatz haben wir jetzt auf.
> Ich weiß nicht so recht, was der Zusatz mathematisch
> bedeutet und somit habe ich keinen Ansatz für die Lösung.
> Kann mir jemand den mathematischen zusammenhang erklären
> bitte?
Gesucht ist also die Rotation von [mm]\overrightarrow{v_{2}}.[/mm].
Die definition der Rotation findest Du hier:
http://de.wikipedia.org/wiki/Rotation_(Mathematik)
FRED
|
|
|
|
|
Ja, das ist mir bewusst.
Mein Problem ist, dass ich nicht weiß, worauf ich die Rotation anwenden muss, d.h. ich weiß nicht, was [mm] \overrightarrow{v}/{y} [/mm] bedeutet.
Ist es das gleiche wie: [mm] \overrightarrow{v_{2}} [/mm] = [mm] \bruch{1}{y}* [/mm] v?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:59 Di 13.12.2011 | Autor: | fred97 |
> Ja, das ist mir bewusst.
> Mein Problem ist, dass ich nicht weiß, worauf ich die
> Rotation anwenden muss, d.h. ich weiß nicht, was
> [mm]\overrightarrow{v}/{y}[/mm] bedeutet.
> Ist es das gleiche wie: [mm]\overrightarrow{v_{2}}[/mm] =
> [mm]\bruch{1}{y}*[/mm] v?
Ja: [mm] $\bruch{1}{y}*\vec{v}$
[/mm]
FRED
|
|
|
|